- 
                Notifications
    You must be signed in to change notification settings 
- Fork 150
Fix Phi long context issue #1504
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
          
     Open
      
      
            helena-intel
  wants to merge
  8
  commits into
  huggingface:main
  
    
      
        
          
  
    
      Choose a base branch
      
     
    
      
        
      
      
        
          
          
        
        
          
            
              
              
              
  
           
        
        
          
            
              
              
           
        
       
     
  
        
          
            
          
            
          
        
       
    
      
from
helena-intel:ea/lonrope_exp
  
      
      
   
  
    
  
  
  
 
  
      
    base: main
Could not load branches
            
              
  
    Branch not found: {{ refName }}
  
            
                
      Loading
              
            Could not load tags
            
            
              Nothing to show
            
              
  
            
                
      Loading
              
            Are you sure you want to change the base?
            Some commits from the old base branch may be removed from the timeline,
            and old review comments may become outdated.
          
          
      
        
          +144
        
        
          −9
        
        
          
        
      
    
  
  
     Open
                    Changes from 7 commits
      Commits
    
    
            Show all changes
          
          
            8 commits
          
        
        Select commit
          Hold shift + click to select a range
      
      4440904
              
                test longrope phi4
              
              
                eaidova 72cd3c8
              
                update prepare_inputs_for_generation
              
              
                eaidova 8aa5978
              
                change condition
              
              
                eaidova 19feb0b
              
                Merge branch 'main' into ea/lonrope_exp
              
              
                IlyasMoutawwakil 822664a
              
                Merge branch 'main' into ea/lonrope_exp
              
              
                helena-intel 4426e18
              
                Merge remote-tracking branch 'origin/main' into ea/lonrope_exp
              
              
                helena-intel 9f0394a
              
                Merge remote-tracking branch 'origin/main' into ea/lonrope_exp
              
              
                helena-intel c8adca6
              
                Skip longrope for phi_moe for now
              
              
                helena-intel File filter
Filter by extension
Conversations
          Failed to load comments.   
        
        
          
      Loading
        
  Jump to
        
          Jump to file
        
      
      
          Failed to load files.   
        
        
          
      Loading
        
  Diff view
Diff view
There are no files selected for viewing
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
              | Original file line number | Diff line number | Diff line change | 
|---|---|---|
|  | @@ -1493,15 +1493,54 @@ def _phi3_self_attn_sdpa_forward( | |
| return attn_output, None, past_key_value | ||
|  | ||
|  | ||
| # @torch.jit.script | ||
| There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. please remove not needed comments and commented out code | ||
| def select_ext_factor( | ||
| seq_len: torch.Tensor, max_pos_embeddings: torch.Tensor, short_factor: torch.Tensor, long_factor: torch.Tensor | ||
| ): | ||
| return torch.where( | ||
| seq_len <= max_pos_embeddings, short_factor, long_factor | ||
| ) # short_factor * (seq_len <= max_pos_embeddings) + long_factor * (seq_len > max_pos_embeddings) | ||
|  | ||
|  | ||
| def long_rope(self, x, position_ids, seq_len=None): | ||
| seq_len = torch.max(position_ids) + 1 | ||
| original_max_position_embeddings = ( | ||
| self.original_max_position_embeddings | ||
| if hasattr(self, "original_max_positional_embeddings") | ||
| else self.config.original_max_position_embeddings | ||
| ) | ||
| max_position_embeddings = ( | ||
| self.max_position_embeddings | ||
| if hasattr(self, "max_position_embeddings") | ||
| else self.config.max_position_embeddings | ||
| ) | ||
| inv_freq = select_ext_factor(seq_len, original_max_position_embeddings, self.inv_freq, self.long_inv_freq) | ||
|  | ||
| inv_freq_expanded = inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) | ||
| position_ids_expanded = position_ids[:, None, :].float() | ||
|  | ||
| # Force float32 since bfloat16 loses precision on long contexts | ||
| # See https://github.com/huggingface/transformers/pull/29285 | ||
| device_type = x.device.type | ||
| device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" | ||
| freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) | ||
| emb = torch.cat((freqs, freqs), dim=-1) | ||
|  | ||
| scale = max_position_embeddings / original_max_position_embeddings | ||
| if scale <= 1.0: | ||
| scaling_factor = 1.0 | ||
| else: | ||
| scaling_factor = math.sqrt(1 + math.log(scale) / math.log(original_max_position_embeddings)) | ||
| cos = emb.cos() * scaling_factor | ||
| sin = emb.sin() * scaling_factor | ||
| return cos, sin | ||
|  | ||
|  | ||
| class Phi3ModelPatcher(OVDecoderModelPatcher): | ||
| def __enter__(self): | ||
| super().__enter__() | ||
|  | ||
| # currently, long RoPE can not be traced for long context support, disable it for avoid potential accuracy issues | ||
| if self._model.config.max_position_embeddings != getattr( | ||
| self._model.config, "original_max_position_embeddings", self._model.config.max_position_embeddings | ||
| ): | ||
| self._model.config.max_position_embeddings = self._model.config.original_max_position_embeddings | ||
|  | ||
| if is_transformers_version("<", "4.48.0"): | ||
| self._model.model._orig_forward = self._model.model.forward | ||
|  | @@ -1529,6 +1568,23 @@ def __enter__(self): | |
| rotary_emb.base ** (torch.arange(0, rotary_emb.dim, 2, dtype=torch.int64).float() / rotary_emb.dim) | ||
| ) | ||
|  | ||
| if ( | ||
| hasattr(self._model.model, "rotary_emb") | ||
| and getattr(self._model.model.rotary_emb, "rope_type", "default") == "longrope" | ||
| ): | ||
| long_inv_freq, _ = self._model.model.rotary_emb.rope_init_fn( | ||
| self._model.config, | ||
| torch.device("cpu"), | ||
| seq_len=self._model.config.original_max_position_embeddings + 1, | ||
| ) | ||
| self._model.model.rotary_emb.long_inv_freq = long_inv_freq | ||
| self._model.model.rotary_emb._orig_forward = self._model.model.rotary_emb.forward | ||
| self._model.model.rotary_emb.forward = types.MethodType(long_rope, self._model.model.rotary_emb) | ||
| elif self._model.config.max_position_embeddings != getattr( | ||
| self._model.config, "original_max_position_embeddings", self._model.config.max_position_embeddings | ||
| ): | ||
| self._model.config.max_position_embeddings = self._model.config.original_max_position_embeddings | ||
|  | ||
| def __exit__(self, exc_type, exc_value, traceback): | ||
| super().__exit__(exc_type, exc_value, traceback) | ||
| if hasattr(self._model.model, "_orig_forward"): | ||
|  | @@ -1538,6 +1594,8 @@ def __exit__(self, exc_type, exc_value, traceback): | |
| for layer in self._model.model.layers: | ||
| if hasattr(layer.self_attn, "_orig_forward"): | ||
| layer.self_attn.forward = layer.self_attn._orig_forward | ||
| if hasattr(self._model.model, "rotary_emb") and hasattr(self._model.model.rotary_emb, "_orig_forward"): | ||
| self._model.model.rotary_emb.forward = self._model.model.rotary_emb._orig_forward | ||
|  | ||
|  | ||
| # Modified from https://github.com/huggingface/transformers/blob/v4.50.2/src/transformers/models/phimoe/modeling_phimoe.py#L756 | ||
|  | ||
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
              
              | Original file line number | Diff line number | Diff line change | 
|---|---|---|
|  | @@ -358,10 +358,10 @@ def _export( | |
| variant=variant, | ||
| ) | ||
|  | ||
| if config.model_type == "phi3" and config.max_position_embeddings != getattr( | ||
| config, "original_max_position_embeddings", config.max_position_embeddings | ||
| ): | ||
| config.max_position_embeddings = config.original_max_position_embeddings | ||
| # if config.model_type == "phi3" and config.max_position_embeddings != getattr( | ||
| # config, "original_max_position_embeddings", config.max_position_embeddings | ||
| # ): | ||
| # config.max_position_embeddings = config.original_max_position_embeddings | ||
| 
      Comment on lines
    
      +361
     to 
      +364
    
   There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This should be deleted but I left it here for now for context. | ||
|  | ||
| return cls._from_pretrained( | ||
| model_id=save_dir_path, | ||
|  | @@ -870,6 +870,8 @@ def _from_pretrained( | |
| init_cls = OVBloomForCausalLM | ||
| elif model_type == "gpt_bigcode": | ||
| init_cls = OVGPTBigCodeForCausalLM | ||
| elif model_type == "phi3": | ||
| init_cls = OVPhi3ForCausalLM | ||
| elif model_type in SSM_MODELS: | ||
| init_cls = OVModelWithMambaForCausalLM | ||
| else: | ||
|  | @@ -950,6 +952,47 @@ def _from_pretrained( | |
| return causal_model | ||
|  | ||
|  | ||
| class OVPhi3ForCausalLM(OVModelForCausalLM): | ||
| def prepare_inputs_for_generation( | ||
| self, | ||
| input_ids, | ||
| past_key_values=None, | ||
| attention_mask=None, | ||
| inputs_embeds=None, | ||
| cache_position=None, | ||
| position_ids=None, | ||
| use_cache=True, | ||
| logits_to_keep=None, | ||
| **kwargs, | ||
| ): | ||
| # Overwritten -- this model may need to switch between short and long rope, invalidating the cache in the | ||
| # process | ||
|  | ||
| # When the first time input length reached long and short factor switching point, enforce re-compute cache | ||
| # It will cause downside of slower at this single token position, however, better than current failure. | ||
| if ( | ||
| past_key_values | ||
| and self.config.rope_scaling | ||
| and input_ids.shape[1] >= self.config.original_max_position_embeddings + 1 | ||
| ): | ||
| past_length = cache_position[0] | ||
| if past_length <= self.config.original_max_position_embeddings: | ||
| past_key_values = None | ||
|  | ||
| model_inputs = super().prepare_inputs_for_generation( | ||
| input_ids=input_ids, | ||
| past_key_values=past_key_values, | ||
| attention_mask=attention_mask, | ||
| inputs_embeds=inputs_embeds, | ||
| cache_position=cache_position, | ||
| position_ids=position_ids, | ||
| use_cache=use_cache, | ||
| logits_to_keep=logits_to_keep, | ||
| **kwargs, | ||
| ) | ||
| return model_inputs | ||
|  | ||
|  | ||
| class OVBloomForCausalLM(OVModelForCausalLM): | ||
| # Adapted from transformers.models.bloom.modeling_bloom.BloomForCausalLM.prepare_inputs_for_generation | ||
| def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs): | ||
|  | ||
      
      Oops, something went wrong.
        
    
  
  Add this suggestion to a batch that can be applied as a single commit.
  This suggestion is invalid because no changes were made to the code.
  Suggestions cannot be applied while the pull request is closed.
  Suggestions cannot be applied while viewing a subset of changes.
  Only one suggestion per line can be applied in a batch.
  Add this suggestion to a batch that can be applied as a single commit.
  Applying suggestions on deleted lines is not supported.
  You must change the existing code in this line in order to create a valid suggestion.
  Outdated suggestions cannot be applied.
  This suggestion has been applied or marked resolved.
  Suggestions cannot be applied from pending reviews.
  Suggestions cannot be applied on multi-line comments.
  Suggestions cannot be applied while the pull request is queued to merge.
  Suggestion cannot be applied right now. Please check back later.
  
    
  
    
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think it makes sense to add the test with long prompt. Is this issue reproduced on tiny-model?