-
Couldn't load subscription status.
- Fork 2.1k
FEAT add GraLoRA #2851
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
yeonjoon-jung01
wants to merge
11
commits into
huggingface:main
Choose a base branch
from
yeonjoon-jung01:gralora_support
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
FEAT add GraLoRA #2851
Changes from all commits
Commits
Show all changes
11 commits
Select commit
Hold shift + click to select a range
6dfa24e
feat: Add Gralora configuration and basic implementation
yeonjoon-jung01 bfa1ef7
ENH Support merge/unmerge in GraLoRA functionality; support init_weig…
HaohanTsao 9813b17
TST Add test suite for GraLoRA.
HaohanTsao c1fe6c4
FIX & TEST: Fix GraLoRA bugs in get_peft_config_as_dict and improve t…
HaohanTsao 4f1444f
Refactor GraLoRA weight computation to improve efficiency in delta-we…
yeonjoon-jung01 9431502
Refactor GraLoRA code for clearer documentation, simplified inheritan…
yeonjoon-jung01 dec25f5
Update test code for the GraLoRA method
yeonjoon-jung01 925ad72
ADD: documentations, examples, and test code for GraLoRA method
yeonjoon-jung01 3f69d8f
REFACTOR: integrate GraLoRA tests into existing test files
yeonjoon-jung01 430e896
UPDATE document format in GraLoRA
yeonjoon-jung01 351877f
FIX CPU casting in GraLoRA get_delta_weight function
yeonjoon-jung01 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,32 @@ | ||
| # GraLoRA | ||
|
|
||
| [**Granular Low-Rank Adaptation (GraLoRA)**](https://huggingface.co/papers/2505.20355) is a PEFT method designed to enhance the **expressivity** of low-rank adaptation while improving **robustness to outlier** activations, based on insights from well-known issues in quantization. | ||
|
|
||
|  | ||
|
|
||
| Unlike standard LoRA, which applies a single low-rank adapter across the entire feature space, GraLoRA introduces a structured and fine-grained adaptation scheme. It divides the adaptation space into a grid of $𝑘^2$ smaller, independent adapter pairs, each responsible for a localized subset of the input and output dimensions. As a result, each adapter operates on a subspace that is $k$ times smaller in both dimensions than the original LoRA adapter. | ||
|
|
||
| This granular decomposition enables spatially localized and context-aware updates, effectively increasing representational capacity without additional parameters or computational cost. By isolating the influence of extreme activations within smaller subspaces, GraLoRA mitigates gradient distortion and preserves inter-channel balance during adaptation. | ||
|
|
||
| --- | ||
|
|
||
| The abstract from the paper is: | ||
|
|
||
| *Low-Rank Adaptation (LoRA) is a popular method for parameter-efficient fine- | ||
| tuning (PEFT) of generative models, valued for its simplicity and effectiveness. | ||
| Despite recent enhancements, LoRA still suffers from a fundamental limitation: | ||
| overfitting when the bottleneck is widened. It performs best at ranks 32–64, yet its | ||
| accuracy stagnates or declines at higher ranks, still falling short of full fine-tuning | ||
| (FFT) performance. We identify the root cause as LoRA’s structural bottleneck, | ||
| which introduces gradient entanglement to the unrelated input channels and distorts | ||
| gradient propagation. To address this, we introduce a novel structure, Granular | ||
| Low-Rank Adaptation (GraLoRA) that partitions weight matrices into sub-blocks, | ||
| each with its own low-rank adapter. With negligible computational or storage cost, | ||
| GraLoRA overcomes LoRA’s limitations, effectively increases the representational | ||
| capacity, and more closely approximates FFT behavior. Experiments on code | ||
| generation, commonsense reasoning, mathematical reasoning, general language | ||
| understanding, and image generation benchmarks show that GraLoRA consistently | ||
| outperforms LoRA and other baselines, achieving up to +8.5% absolute gain in | ||
| Pass@1 on HumanEval+. These improvements hold across model sizes and rank | ||
| settings, making GraLoRA a scalable and robust solution for PEFT.* | ||
|
|
||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,71 @@ | ||
| # GraLoRA: Granular Low-Rank Adaptation | ||
|
|
||
|  | ||
|
|
||
| ## Introduction | ||
| [**Granular Low-Rank Adaptation (GraLoRA)**](https://huggingface.co/papers/2505.20355) is a PEFT method designed to enhance the **expressivity** of low-rank adaptation while improving **robustness to outlier** activations, based on insights from well-known issues in quantization. | ||
|
|
||
| GraLoRA introduces a structured and fine-grained adaptation scheme. It divides the adaptation space into a grid of $𝑘^2$ smaller, independent adapter pairs, each responsible for a localized subset of the input and output dimensions. | ||
|
|
||
| ## Quick start | ||
|
|
||
| With respect to your standard PEFT training procedure with LoRA, simply swap your `LoraConfig` for a `GraloraConfig`. | ||
|
|
||
| ```python | ||
| import torch | ||
| from peft import GraloraConfig, get_peft_model | ||
| from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer | ||
| from datasets import load_dataset | ||
|
|
||
| model = AutoModelForCausalLM.from_pretrained("huggyllama/llama-7b", device_map="auto") | ||
| tokenizer = AutoTokenizer.from_pretrained("huggyllama/llama-7b") | ||
| dataset = load_dataset("timdettmers/openassistant-guanaco", split="train") | ||
| gralora_config = GraloraConfig() | ||
| peft_model = get_peft_model(model, gralora_config) | ||
| trainer = transformers.Trainer( | ||
| model=peft_model, | ||
| train_dataset=dataset, | ||
| dataset_text_field="text", | ||
| max_seq_length=2048, | ||
| tokenizer=tokenizer, | ||
| ) | ||
| trainer.train() | ||
| peft_model.save_pretrained("gralora-llama-3-8b") | ||
| ``` | ||
|
|
||
| Run the finetuning script simply by running: | ||
| ```python | ||
| python examples/gralora_finetuning/gralora_finetuning.py --base_model meta-llama/Meta-Llama-3-8B --data_path timdettmers/openassistant-guanaco | ||
| ``` | ||
|
|
||
| ## Use the model on 🤗 | ||
| You can load and use the model as any other 🤗 models. | ||
| ```python | ||
| import torch | ||
| from peft import PeftModel | ||
| from transformers import AutoModelForCausalLM | ||
|
|
||
| model = AutoModelForCausalLM.from_pretrained( | ||
| "meta-llama/Meta-Llama-3-8B", dtype=torch.bfloat16, device_map="auto" | ||
| ) | ||
| peft_model = PeftModel.from_pretrained(model, "gralora-llama-3-8b") | ||
| ``` | ||
|
|
||
| ## Additonal Notes | ||
| While `gralora_k` is set to 2 for default, you can increase this value to create more fine-grained adapters. `gralora_k` of 4 is recommended when the total rank (`r + hybrid_r`) is 64 or higher. | ||
|
|
||
|
|
||
|
|
||
|
|
||
| ## Citation | ||
| ``` | ||
| @misc{jung2025graloragranularlowrankadaptation, | ||
| title={GraLoRA: Granular Low-Rank Adaptation for Parameter-Efficient Fine-Tuning}, | ||
| author={Yeonjoon Jung and Daehyun Ahn and Hyungjun Kim and Taesu Kim and Eunhyeok Park}, | ||
| year={2025}, | ||
| eprint={2505.20355}, | ||
| archivePrefix={arXiv}, | ||
| primaryClass={cs.LG}, | ||
| url={https://arxiv.org/abs/2505.20355}, | ||
| } | ||
| ``` |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,213 @@ | ||
| # This script is based on examples/dora_finetuning/dora_finetuning.py | ||
| import os | ||
|
|
||
| import torch | ||
| from datasets import load_dataset | ||
| from transformers import ( | ||
| AutoModelForCausalLM, | ||
| AutoTokenizer, | ||
| BitsAndBytesConfig, | ||
| DataCollatorForLanguageModeling, | ||
| Trainer, | ||
| TrainingArguments, | ||
| ) | ||
|
|
||
| from peft import GraloraConfig, get_peft_model, prepare_model_for_kbit_training | ||
|
|
||
|
|
||
| def train_model( | ||
| base_model: str, | ||
| data_path: str, | ||
| output_dir: str, | ||
| batch_size: int, | ||
| num_epochs: int, | ||
| learning_rate: float, | ||
| cutoff_len: int, | ||
| val_set_size: int, | ||
| quantize: bool, | ||
| eval_step: int, | ||
| save_step: int, | ||
| device: str, | ||
| gralora_r: int, | ||
| gralora_alpha: int, | ||
| gralora_dropout: float, | ||
| gralora_target_modules: str, | ||
| gralora_k: int, | ||
| hybrid_r: int, | ||
| hub_model_id: str, | ||
| push_to_hub: bool, | ||
| ): | ||
| os.environ["TOKENIZERS_PARALLELISM"] = "false" | ||
| hf_token = os.getenv("HF_TOKEN") | ||
|
|
||
| # Setup device | ||
| if device == "auto": | ||
| device = torch.accelerator.current_accelerator().type if hasattr(torch, "accelerator") else "cuda" | ||
| else: | ||
| device = torch.device(device) | ||
| print(f"Using device: {device}") | ||
|
|
||
| # load tokenizer | ||
| tokenizer = AutoTokenizer.from_pretrained(base_model, token=hf_token) | ||
|
|
||
| # Quantized GraLoRA: IF YOU WANNA QUANTIZE THE MODEL | ||
| if quantize: | ||
| if (torch.cuda.is_available() and torch.cuda.is_bf16_supported()) or torch.xpu.is_available(): | ||
| bnb_4bit_compute_dtype = torch.bfloat16 | ||
| else: | ||
| bnb_4bit_compute_dtype = torch.float16 | ||
| model = AutoModelForCausalLM.from_pretrained( | ||
| base_model, | ||
| token=hf_token, | ||
| quantization_config=BitsAndBytesConfig( | ||
| load_in_4bit=True, | ||
| bnb_4bit_compute_dtype=bnb_4bit_compute_dtype, | ||
| bnb_4bit_use_double_quant=True, | ||
| bnb_4bit_quant_type="nf4", | ||
| ), | ||
| ) | ||
| # setup for quantized training | ||
| model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=True) | ||
| else: | ||
| model = AutoModelForCausalLM.from_pretrained(base_model, token=hf_token) | ||
| # GraLoRA config for the PEFT model | ||
| gralora_config = GraloraConfig( | ||
| r=gralora_r, # Rank of matrix | ||
| gralora_alpha=gralora_alpha, | ||
| target_modules=( | ||
| gralora_target_modules.split(",") | ||
| if gralora_target_modules | ||
| else ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"] | ||
| ), | ||
| gralora_dropout=gralora_dropout, | ||
| gralora_k=gralora_k, | ||
| hybrid_r=hybrid_r, | ||
| bias="none", | ||
| ) | ||
|
|
||
| # get the peft model with GraLoRA config | ||
| model = get_peft_model(model, gralora_config) | ||
|
|
||
| model.to(device) # MODEL TO GPU/CUDA | ||
| tokenizer.pad_token = tokenizer.eos_token | ||
|
|
||
| # Load the dataset | ||
| dataset = load_dataset(data_path) | ||
|
|
||
| def tokenize_function(examples): | ||
| inputs = tokenizer(examples["text"], padding="max_length", truncation=True, max_length=cutoff_len) | ||
| inputs["labels"] = inputs["input_ids"].copy() # setting labels for a language modeling task | ||
| return inputs | ||
|
|
||
| # Tokenize the dataset and prepare for training | ||
| tokenized_datasets = dataset.map(tokenize_function, batched=True, remove_columns=dataset["train"].column_names) | ||
|
|
||
| # Data collator to dynamically pad the batched examples | ||
| data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False) | ||
|
|
||
| # Define training arguments | ||
| training_args = TrainingArguments( | ||
| output_dir=output_dir, | ||
| num_train_epochs=num_epochs, | ||
| per_device_train_batch_size=batch_size, | ||
| per_device_eval_batch_size=batch_size, | ||
| warmup_steps=100, | ||
| weight_decay=0.01, | ||
| logging_dir="./logs", | ||
| logging_steps=eval_step, | ||
| save_steps=save_step, | ||
| save_total_limit=2, | ||
| push_to_hub=push_to_hub, | ||
| hub_model_id=hub_model_id, | ||
| gradient_accumulation_steps=16, | ||
| fp16=True, | ||
| learning_rate=learning_rate, | ||
| hub_token=hf_token, | ||
| ) | ||
|
|
||
| # Clear device cache to free memory | ||
| if torch.cuda.is_available(): | ||
| torch.cuda.empty_cache() | ||
| elif torch.xpu.is_available(): | ||
| torch.xpu.empty_cache() | ||
|
|
||
| # Initialize the Trainer | ||
| trainer = Trainer( | ||
| model=model, | ||
| args=training_args, | ||
| train_dataset=tokenized_datasets["train"], | ||
| eval_dataset=tokenized_datasets["test"], | ||
| data_collator=data_collator, | ||
| ) | ||
|
|
||
| # Start model training | ||
| trainer.train() | ||
|
|
||
| # Save and push the trained model and tokenizer | ||
| if push_to_hub: | ||
| # Push the main model to the hub | ||
| trainer.push_to_hub(commit_message="Fine-tuned model") | ||
|
|
||
| # Save the model and tokenizer locally | ||
| model.save_pretrained(output_dir) | ||
| tokenizer.save_pretrained(output_dir) | ||
|
|
||
|
|
||
| if __name__ == "__main__": | ||
| import argparse | ||
|
|
||
| parser = argparse.ArgumentParser(description="Fine-tune LLaMA with GraLoRA and PEFT") | ||
| parser.add_argument("--base_model", type=str, default="huggyllama/llama-7b", help="Base model path or name") | ||
| parser.add_argument( | ||
| "--data_path", type=str, default="timdettmers/openassistant-guanaco", help="Dataset path or name" | ||
| ) | ||
| parser.add_argument( | ||
| "--output_dir", type=str, default="path/to/output", help="Output directory for the fine-tuned model" | ||
| ) | ||
| parser.add_argument("--batch_size", type=int, default=1, help="Batch size") | ||
| parser.add_argument("--num_epochs", type=int, default=1, help="Number of training epochs") | ||
| parser.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate") | ||
| parser.add_argument("--cutoff_len", type=int, default=512, help="Cutoff length for tokenization") | ||
| parser.add_argument("--val_set_size", type=int, default=500, help="Validation set size") | ||
| parser.add_argument("--quantize", action="store_true", help="Use quantization") | ||
| parser.add_argument("--eval_step", type=int, default=10, help="Evaluation step interval") | ||
| parser.add_argument("--save_step", type=int, default=100, help="Save step interval") | ||
| parser.add_argument("--device", type=str, default="auto", help="Device to use for training") | ||
| parser.add_argument("--gralora_r", type=int, default=8, help="LoRA rank") | ||
| parser.add_argument("--gralora_alpha", type=int, default=16, help="LoRA alpha") | ||
| parser.add_argument("--gralora_dropout", type=float, default=0.05, help="LoRA dropout rate") | ||
| parser.add_argument( | ||
| "--gralora_target_modules", type=str, default=None, help="Comma-separated list of target modules for LoRA" | ||
| ) | ||
| parser.add_argument("--gralora_k", type=int, default=2, help="GraLoRA k") | ||
| parser.add_argument("--hybrid_r", type=int, default=0, help="Hybrid rank") | ||
| parser.add_argument( | ||
| "--hub_model_id", | ||
| type=str, | ||
| default="path/to/repo", | ||
| help="Repository name to push the model on the Hugging Face Hub", | ||
| ) | ||
| parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the model to Hugging Face Hub") | ||
| args = parser.parse_args() | ||
| train_model( | ||
| base_model=args.base_model, | ||
| data_path=args.data_path, | ||
| output_dir=args.output_dir, | ||
| batch_size=args.batch_size, | ||
| num_epochs=args.num_epochs, | ||
| learning_rate=args.learning_rate, | ||
| cutoff_len=args.cutoff_len, | ||
| val_set_size=args.val_set_size, | ||
| quantize=args.quantize, | ||
| eval_step=args.eval_step, | ||
| save_step=args.save_step, | ||
| device=args.device, | ||
| gralora_r=args.gralora_r, | ||
| gralora_alpha=args.gralora_alpha, | ||
| gralora_dropout=args.gralora_dropout, | ||
| gralora_target_modules=args.gralora_target_modules, | ||
| gralora_k=args.gralora_k, | ||
| hybrid_r=args.hybrid_r, | ||
| hub_model_id=args.hub_model_id, | ||
| push_to_hub=args.push_to_hub, | ||
| ) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,24 @@ | ||
| # Copyright 2025-present the HuggingFace Inc. team. | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
|
|
||
| from peft.utils import register_peft_method | ||
|
|
||
| from .config import GraloraConfig | ||
| from .layer import GraloraLayer | ||
| from .model import GraloraModel | ||
|
|
||
|
|
||
| __all__ = ["GraloraConfig", "GraloraLayer", "GraloraModel"] | ||
|
|
||
| register_peft_method(name="gralora", config_cls=GraloraConfig, model_cls=GraloraModel) |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Please also add an entry to the toctree.