Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions docs/source/_toctree.yml
Original file line number Diff line number Diff line change
Expand Up @@ -116,6 +116,8 @@
title: VeRA
- local: package_reference/fourierft
title: FourierFT
- local: package_reference/gralora
title: GraLoRA
- local: package_reference/vblora
title: VB-LoRA
- local: package_reference/hra
Expand Down
32 changes: 32 additions & 0 deletions docs/source/package_reference/gralora.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
# GraLoRA
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please also add an entry to the toctree.


[**Granular Low-Rank Adaptation (GraLoRA)**](https://huggingface.co/papers/2505.20355) is a PEFT method designed to enhance the **expressivity** of low-rank adaptation while improving **robustness to outlier** activations, based on insights from well-known issues in quantization.

![GraLoRA Overview](https://github.com/SqueezeBits/GraLoRA/raw/main/figure/gralora_overview.png)

Unlike standard LoRA, which applies a single low-rank adapter across the entire feature space, GraLoRA introduces a structured and fine-grained adaptation scheme. It divides the adaptation space into a grid of $𝑘^2$ smaller, independent adapter pairs, each responsible for a localized subset of the input and output dimensions. As a result, each adapter operates on a subspace that is $k$ times smaller in both dimensions than the original LoRA adapter.

This granular decomposition enables spatially localized and context-aware updates, effectively increasing representational capacity without additional parameters or computational cost. By isolating the influence of extreme activations within smaller subspaces, GraLoRA mitigates gradient distortion and preserves inter-channel balance during adaptation.

---

The abstract from the paper is:

*Low-Rank Adaptation (LoRA) is a popular method for parameter-efficient fine-
tuning (PEFT) of generative models, valued for its simplicity and effectiveness.
Despite recent enhancements, LoRA still suffers from a fundamental limitation:
overfitting when the bottleneck is widened. It performs best at ranks 32–64, yet its
accuracy stagnates or declines at higher ranks, still falling short of full fine-tuning
(FFT) performance. We identify the root cause as LoRA’s structural bottleneck,
which introduces gradient entanglement to the unrelated input channels and distorts
gradient propagation. To address this, we introduce a novel structure, Granular
Low-Rank Adaptation (GraLoRA) that partitions weight matrices into sub-blocks,
each with its own low-rank adapter. With negligible computational or storage cost,
GraLoRA overcomes LoRA’s limitations, effectively increases the representational
capacity, and more closely approximates FFT behavior. Experiments on code
generation, commonsense reasoning, mathematical reasoning, general language
understanding, and image generation benchmarks show that GraLoRA consistently
outperforms LoRA and other baselines, achieving up to +8.5% absolute gain in
Pass@1 on HumanEval+. These improvements hold across model sizes and rank
settings, making GraLoRA a scalable and robust solution for PEFT.*

71 changes: 71 additions & 0 deletions examples/gralora_finetuning/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
# GraLoRA: Granular Low-Rank Adaptation

![GraLoRA Overview](https://github.com/SqueezeBits/GraLoRA/raw/main/figure/gralora_overview.png)

## Introduction
[**Granular Low-Rank Adaptation (GraLoRA)**](https://huggingface.co/papers/2505.20355) is a PEFT method designed to enhance the **expressivity** of low-rank adaptation while improving **robustness to outlier** activations, based on insights from well-known issues in quantization.

GraLoRA introduces a structured and fine-grained adaptation scheme. It divides the adaptation space into a grid of $𝑘^2$ smaller, independent adapter pairs, each responsible for a localized subset of the input and output dimensions.

## Quick start

With respect to your standard PEFT training procedure with LoRA, simply swap your `LoraConfig` for a `GraloraConfig`.

```python
import torch
from peft import GraloraConfig, get_peft_model
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer
from datasets import load_dataset

model = AutoModelForCausalLM.from_pretrained("huggyllama/llama-7b", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("huggyllama/llama-7b")
dataset = load_dataset("timdettmers/openassistant-guanaco", split="train")
gralora_config = GraloraConfig()
peft_model = get_peft_model(model, gralora_config)
trainer = transformers.Trainer(
model=peft_model,
train_dataset=dataset,
dataset_text_field="text",
max_seq_length=2048,
tokenizer=tokenizer,
)
trainer.train()
peft_model.save_pretrained("gralora-llama-3-8b")
```

Run the finetuning script simply by running:
```python
python examples/gralora_finetuning/gralora_finetuning.py --base_model meta-llama/Meta-Llama-3-8B --data_path timdettmers/openassistant-guanaco
```

## Use the model on 🤗
You can load and use the model as any other 🤗 models.
```python
import torch
from peft import PeftModel
from transformers import AutoModelForCausalLM

model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Meta-Llama-3-8B", dtype=torch.bfloat16, device_map="auto"
)
peft_model = PeftModel.from_pretrained(model, "gralora-llama-3-8b")
```

## Additonal Notes
While `gralora_k` is set to 2 for default, you can increase this value to create more fine-grained adapters. `gralora_k` of 4 is recommended when the total rank (`r + hybrid_r`) is 64 or higher.




## Citation
```
@misc{jung2025graloragranularlowrankadaptation,
title={GraLoRA: Granular Low-Rank Adaptation for Parameter-Efficient Fine-Tuning},
author={Yeonjoon Jung and Daehyun Ahn and Hyungjun Kim and Taesu Kim and Eunhyeok Park},
year={2025},
eprint={2505.20355},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2505.20355},
}
```
213 changes: 213 additions & 0 deletions examples/gralora_finetuning/gralora_finetuning.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,213 @@
# This script is based on examples/dora_finetuning/dora_finetuning.py
import os

import torch
from datasets import load_dataset
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
DataCollatorForLanguageModeling,
Trainer,
TrainingArguments,
)

from peft import GraloraConfig, get_peft_model, prepare_model_for_kbit_training


def train_model(
base_model: str,
data_path: str,
output_dir: str,
batch_size: int,
num_epochs: int,
learning_rate: float,
cutoff_len: int,
val_set_size: int,
quantize: bool,
eval_step: int,
save_step: int,
device: str,
gralora_r: int,
gralora_alpha: int,
gralora_dropout: float,
gralora_target_modules: str,
gralora_k: int,
hybrid_r: int,
hub_model_id: str,
push_to_hub: bool,
):
os.environ["TOKENIZERS_PARALLELISM"] = "false"
hf_token = os.getenv("HF_TOKEN")

# Setup device
if device == "auto":
device = torch.accelerator.current_accelerator().type if hasattr(torch, "accelerator") else "cuda"
else:
device = torch.device(device)
print(f"Using device: {device}")

# load tokenizer
tokenizer = AutoTokenizer.from_pretrained(base_model, token=hf_token)

# Quantized GraLoRA: IF YOU WANNA QUANTIZE THE MODEL
if quantize:
if (torch.cuda.is_available() and torch.cuda.is_bf16_supported()) or torch.xpu.is_available():
bnb_4bit_compute_dtype = torch.bfloat16
else:
bnb_4bit_compute_dtype = torch.float16
model = AutoModelForCausalLM.from_pretrained(
base_model,
token=hf_token,
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=bnb_4bit_compute_dtype,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
),
)
# setup for quantized training
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=True)
else:
model = AutoModelForCausalLM.from_pretrained(base_model, token=hf_token)
# GraLoRA config for the PEFT model
gralora_config = GraloraConfig(
r=gralora_r, # Rank of matrix
gralora_alpha=gralora_alpha,
target_modules=(
gralora_target_modules.split(",")
if gralora_target_modules
else ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
),
gralora_dropout=gralora_dropout,
gralora_k=gralora_k,
hybrid_r=hybrid_r,
bias="none",
)

# get the peft model with GraLoRA config
model = get_peft_model(model, gralora_config)

model.to(device) # MODEL TO GPU/CUDA
tokenizer.pad_token = tokenizer.eos_token

# Load the dataset
dataset = load_dataset(data_path)

def tokenize_function(examples):
inputs = tokenizer(examples["text"], padding="max_length", truncation=True, max_length=cutoff_len)
inputs["labels"] = inputs["input_ids"].copy() # setting labels for a language modeling task
return inputs

# Tokenize the dataset and prepare for training
tokenized_datasets = dataset.map(tokenize_function, batched=True, remove_columns=dataset["train"].column_names)

# Data collator to dynamically pad the batched examples
data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False)

# Define training arguments
training_args = TrainingArguments(
output_dir=output_dir,
num_train_epochs=num_epochs,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
warmup_steps=100,
weight_decay=0.01,
logging_dir="./logs",
logging_steps=eval_step,
save_steps=save_step,
save_total_limit=2,
push_to_hub=push_to_hub,
hub_model_id=hub_model_id,
gradient_accumulation_steps=16,
fp16=True,
learning_rate=learning_rate,
hub_token=hf_token,
)

# Clear device cache to free memory
if torch.cuda.is_available():
torch.cuda.empty_cache()
elif torch.xpu.is_available():
torch.xpu.empty_cache()

# Initialize the Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["test"],
data_collator=data_collator,
)

# Start model training
trainer.train()

# Save and push the trained model and tokenizer
if push_to_hub:
# Push the main model to the hub
trainer.push_to_hub(commit_message="Fine-tuned model")

# Save the model and tokenizer locally
model.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)


if __name__ == "__main__":
import argparse

parser = argparse.ArgumentParser(description="Fine-tune LLaMA with GraLoRA and PEFT")
parser.add_argument("--base_model", type=str, default="huggyllama/llama-7b", help="Base model path or name")
parser.add_argument(
"--data_path", type=str, default="timdettmers/openassistant-guanaco", help="Dataset path or name"
)
parser.add_argument(
"--output_dir", type=str, default="path/to/output", help="Output directory for the fine-tuned model"
)
parser.add_argument("--batch_size", type=int, default=1, help="Batch size")
parser.add_argument("--num_epochs", type=int, default=1, help="Number of training epochs")
parser.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate")
parser.add_argument("--cutoff_len", type=int, default=512, help="Cutoff length for tokenization")
parser.add_argument("--val_set_size", type=int, default=500, help="Validation set size")
parser.add_argument("--quantize", action="store_true", help="Use quantization")
parser.add_argument("--eval_step", type=int, default=10, help="Evaluation step interval")
parser.add_argument("--save_step", type=int, default=100, help="Save step interval")
parser.add_argument("--device", type=str, default="auto", help="Device to use for training")
parser.add_argument("--gralora_r", type=int, default=8, help="LoRA rank")
parser.add_argument("--gralora_alpha", type=int, default=16, help="LoRA alpha")
parser.add_argument("--gralora_dropout", type=float, default=0.05, help="LoRA dropout rate")
parser.add_argument(
"--gralora_target_modules", type=str, default=None, help="Comma-separated list of target modules for LoRA"
)
parser.add_argument("--gralora_k", type=int, default=2, help="GraLoRA k")
parser.add_argument("--hybrid_r", type=int, default=0, help="Hybrid rank")
parser.add_argument(
"--hub_model_id",
type=str,
default="path/to/repo",
help="Repository name to push the model on the Hugging Face Hub",
)
parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the model to Hugging Face Hub")
args = parser.parse_args()
train_model(
base_model=args.base_model,
data_path=args.data_path,
output_dir=args.output_dir,
batch_size=args.batch_size,
num_epochs=args.num_epochs,
learning_rate=args.learning_rate,
cutoff_len=args.cutoff_len,
val_set_size=args.val_set_size,
quantize=args.quantize,
eval_step=args.eval_step,
save_step=args.save_step,
device=args.device,
gralora_r=args.gralora_r,
gralora_alpha=args.gralora_alpha,
gralora_dropout=args.gralora_dropout,
gralora_target_modules=args.gralora_target_modules,
gralora_k=args.gralora_k,
hybrid_r=args.hybrid_r,
hub_model_id=args.hub_model_id,
push_to_hub=args.push_to_hub,
)
4 changes: 4 additions & 0 deletions src/peft/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,6 +64,8 @@
EvaConfig,
FourierFTConfig,
FourierFTModel,
GraloraConfig,
GraloraModel,
HRAConfig,
HRAModel,
IA3Config,
Expand Down Expand Up @@ -163,6 +165,8 @@
"EvaConfig",
"FourierFTConfig",
"FourierFTModel",
"GraloraConfig",
"GraloraModel",
"HRAConfig",
"HRAModel",
"IA3Config",
Expand Down
3 changes: 3 additions & 0 deletions src/peft/tuners/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@
from .cpt import CPTConfig, CPTEmbedding
from .delora import DeloraConfig, DeloraModel
from .fourierft import FourierFTConfig, FourierFTModel
from .gralora import GraloraConfig, GraloraModel
from .hra import HRAConfig, HRAModel
from .ia3 import IA3Config, IA3Model
from .ln_tuning import LNTuningConfig, LNTuningModel
Expand Down Expand Up @@ -74,6 +75,8 @@
"EvaConfig",
"FourierFTConfig",
"FourierFTModel",
"GraloraConfig",
"GraloraModel",
"HRAConfig",
"HRAModel",
"IA3Config",
Expand Down
24 changes: 24 additions & 0 deletions src/peft/tuners/gralora/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
# Copyright 2025-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from peft.utils import register_peft_method

from .config import GraloraConfig
from .layer import GraloraLayer
from .model import GraloraModel


__all__ = ["GraloraConfig", "GraloraLayer", "GraloraModel"]

register_peft_method(name="gralora", config_cls=GraloraConfig, model_cls=GraloraModel)
Loading