Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -224,16 +224,16 @@ def forward(self, hidden_states, size=None):
hidden_states = hidden_states[::-1]

fused_hidden_states = []
# first layer only uses the last hidden_state
size = hidden_states[1].shape[2:]
fused_hidden_state = self.layers[0](hidden_states[0], size=size)
fused_hidden_states.append(fused_hidden_state)
fused_hidden_state = None

# looping from the last layer to the second
for idx, (hidden_state, layer) in enumerate(zip(hidden_states[1:], self.layers[1:])):
size = hidden_states[1:][idx + 1].shape[2:] if idx != (len(hidden_states[1:]) - 1) else None
for idx, (hidden_state, layer) in enumerate(zip(hidden_states, self.layers)):
size = hidden_states[idx + 1].shape[2:] if idx != (len(hidden_states) - 1) else None

fused_hidden_state = layer(fused_hidden_state, hidden_state, size=size)
if fused_hidden_state is None:
# first layer only uses the last hidden_state
fused_hidden_state = layer(hidden_state, size=size)
else:
fused_hidden_state = layer(fused_hidden_state, hidden_state, size=size)

fused_hidden_states.append(fused_hidden_state)

Expand Down
13 changes: 7 additions & 6 deletions src/transformers/models/dpt/modeling_dpt.py
Original file line number Diff line number Diff line change
Expand Up @@ -689,12 +689,13 @@ def forward(self, hidden_states):
hidden_states = hidden_states[::-1]

fused_hidden_states = []
# first layer only uses the last hidden_state
fused_hidden_state = self.layers[0](hidden_states[0])
fused_hidden_states.append(fused_hidden_state)
# looping from the last layer to the second
for hidden_state, layer in zip(hidden_states[1:], self.layers[1:]):
fused_hidden_state = layer(fused_hidden_state, hidden_state)
fused_hidden_state = None
for hidden_state, layer in zip(hidden_states, self.layers):
if fused_hidden_state is None:
# first layer only uses the last hidden_state
fused_hidden_state = layer(hidden_state)
else:
fused_hidden_state = layer(fused_hidden_state, hidden_state)
fused_hidden_states.append(fused_hidden_state)

return fused_hidden_states
Expand Down
13 changes: 7 additions & 6 deletions src/transformers/models/zoedepth/modeling_zoedepth.py
Original file line number Diff line number Diff line change
Expand Up @@ -185,12 +185,13 @@ def forward(self, hidden_states):
hidden_states = hidden_states[::-1]

fused_hidden_states = []
# first layer only uses the last hidden_state
fused_hidden_state = self.layers[0](hidden_states[0])
fused_hidden_states.append(fused_hidden_state)
# looping from the last layer to the second
for hidden_state, layer in zip(hidden_states[1:], self.layers[1:]):
fused_hidden_state = layer(fused_hidden_state, hidden_state)
fused_hidden_state = None
for hidden_state, layer in zip(hidden_states, self.layers):
if fused_hidden_state is None:
# first layer only uses the last hidden_state
fused_hidden_state = layer(hidden_state)
else:
fused_hidden_state = layer(fused_hidden_state, hidden_state)
Comment on lines +188 to +194
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Comment for final review:

This change included in the ZoeDepth model because of the "Copied from" statement, it doesn't unlock torch export for the model, however will be useful if we decide to enable it

fused_hidden_states.append(fused_hidden_state)

return fused_hidden_states
Expand Down
28 changes: 28 additions & 0 deletions tests/models/depth_anything/test_modeling_depth_anything.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@

from transformers import DepthAnythingConfig, Dinov2Config
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_4
from transformers.testing_utils import require_torch, require_vision, slow, torch_device

from ...test_configuration_common import ConfigTester
Expand Down Expand Up @@ -290,3 +291,30 @@ def test_inference(self):
).to(torch_device)

self.assertTrue(torch.allclose(predicted_depth[0, :3, :3], expected_slice, atol=1e-4))

def test_export(self):
for strict in [True, False]:
with self.subTest(strict=strict):
if not is_torch_greater_or_equal_than_2_4:
self.skipTest(reason="This test requires torch >= 2.4 to run.")
model = (
DepthAnythingForDepthEstimation.from_pretrained("LiheYoung/depth-anything-small-hf")
.to(torch_device)
.eval()
)
image_processor = DPTImageProcessor.from_pretrained("LiheYoung/depth-anything-small-hf")
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)

exported_program = torch.export.export(
model,
args=(inputs["pixel_values"],),
strict=strict,
)
with torch.no_grad():
eager_outputs = model(**inputs)
exported_outputs = exported_program.module().forward(inputs["pixel_values"])
self.assertEqual(eager_outputs.predicted_depth.shape, exported_outputs.predicted_depth.shape)
self.assertTrue(
torch.allclose(eager_outputs.predicted_depth, exported_outputs.predicted_depth, atol=1e-4)
)
22 changes: 22 additions & 0 deletions tests/models/dpt/test_modeling_dpt.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@

from transformers import DPTConfig
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_4
from transformers.testing_utils import require_torch, require_vision, slow, torch_device

from ...test_configuration_common import ConfigTester
Expand Down Expand Up @@ -410,3 +411,24 @@ def test_post_processing_depth_estimation(self):
).squeeze()
self.assertTrue(output_enlarged.shape == expected_shape)
self.assertTrue(torch.allclose(predicted_depth_l, output_enlarged, rtol=1e-3))

def test_export(self):
for strict in [True, False]:
with self.subTest(strict=strict):
if not is_torch_greater_or_equal_than_2_4:
self.skipTest(reason="This test requires torch >= 2.4 to run.")
model = DPTForSemanticSegmentation.from_pretrained("Intel/dpt-large-ade").to(torch_device).eval()
image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-large-ade")
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)

exported_program = torch.export.export(
model,
args=(inputs["pixel_values"],),
strict=strict,
)
with torch.no_grad():
eager_outputs = model(**inputs)
exported_outputs = exported_program.module().forward(inputs["pixel_values"])
self.assertEqual(eager_outputs.logits.shape, exported_outputs.logits.shape)
self.assertTrue(torch.allclose(eager_outputs.logits, exported_outputs.logits, atol=1e-4))
Loading