Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
43 changes: 42 additions & 1 deletion tests/models/roberta/test_modeling_roberta.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@

import unittest

from transformers import RobertaConfig, is_torch_available
from transformers import AutoTokenizer, RobertaConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device

from ...generation.test_utils import GenerationTesterMixin
Expand All @@ -41,6 +41,7 @@
RobertaEmbeddings,
create_position_ids_from_input_ids,
)
from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_4

ROBERTA_TINY = "sshleifer/tiny-distilroberta-base"

Expand Down Expand Up @@ -576,3 +577,43 @@ def test_inference_classification_head(self):
# expected_tensor = roberta.predict("mnli", input_ids, return_logits=True).detach()

self.assertTrue(torch.allclose(output, expected_tensor, atol=1e-4))

@slow
def test_export(self):
if not is_torch_greater_or_equal_than_2_4:
self.skipTest(reason="This test requires torch >= 2.4 to run.")

roberta_model = "FacebookAI/roberta-base"
device = "cpu"
attn_implementation = "sdpa"
max_length = 512

tokenizer = AutoTokenizer.from_pretrained(roberta_model)
inputs = tokenizer(
"The goal of life is <mask>.",
return_tensors="pt",
padding="max_length",
max_length=max_length,
)

model = RobertaForMaskedLM.from_pretrained(
roberta_model,
device_map=device,
attn_implementation=attn_implementation,
use_cache=True,
)

logits = model(**inputs).logits
eager_predicted_mask = tokenizer.decode(logits[0, 6].topk(5).indices)
self.assertEqual(eager_predicted_mask.split(), ["happiness", "love", "peace", "freedom", "simplicity"])

exported_program = torch.export.export(
model,
args=(inputs["input_ids"],),
kwargs={"attention_mask": inputs["attention_mask"]},
strict=True,
)

result = exported_program.module().forward(inputs["input_ids"], inputs["attention_mask"])
exported_predicted_mask = tokenizer.decode(result.logits[0, 6].topk(5).indices)
self.assertEqual(eager_predicted_mask, exported_predicted_mask)
Loading