Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
43 changes: 42 additions & 1 deletion tests/models/mobilebert/test_modeling_mobilebert.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,9 @@

import unittest

from transformers import MobileBertConfig, is_torch_available
from packaging import version

from transformers import AutoTokenizer, MobileBertConfig, MobileBertForMaskedLM, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device

Expand Down Expand Up @@ -384,3 +386,42 @@ def test_inference_no_head(self):
upper_bound = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE)

self.assertTrue(lower_bound and upper_bound)

@slow
def test_export(self):
if version.parse(torch.__version__) < version.parse("2.4.0"):
self.skipTest(reason="This test requires torch >= 2.4 to run.")

mobilebert_model = "google/mobilebert-uncased"
device = "cpu"
attn_implementation = "eager"
max_length = 512

tokenizer = AutoTokenizer.from_pretrained(mobilebert_model)
inputs = tokenizer(
f"the man worked as a {tokenizer.mask_token}.",
return_tensors="pt",
padding="max_length",
max_length=max_length,
)

model = MobileBertForMaskedLM.from_pretrained(
mobilebert_model,
device_map=device,
attn_implementation=attn_implementation,
)

logits = model(**inputs).logits
eg_predicted_mask = tokenizer.decode(logits[0, 6].topk(5).indices)
self.assertEqual(eg_predicted_mask.split(), ["carpenter", "waiter", "mechanic", "teacher", "clerk"])

exported_program = torch.export.export(
model,
args=(inputs["input_ids"],),
kwargs={"attention_mask": inputs["attention_mask"]},
strict=True,
)

result = exported_program.module().forward(inputs["input_ids"], inputs["attention_mask"])
ep_predicted_mask = tokenizer.decode(result.logits[0, 6].topk(5).indices)
self.assertEqual(eg_predicted_mask, ep_predicted_mask)