This is an implementation for mosaic image augmention with YOLO format
Run code to perform mosaic augmentation:
python main.py --width 800 --height 800 --scale_x 0.4 --scale_y 0.6 --min_area 500 --min_vi 0.3You can change parameters to fit with your dataset. To know details about arguments in the command above, run
python main.py --help--width: width of mosaic-augmented image--height: height of mosaic-augmented image--scale_x: scale_x - scale by width => define width of the top left image--scale_y: scale_y - scale by height => define height of the top left image--min_area: min area of box after augmentation we will keep--min_vi: min area ratio of box after/before augmentation we will keep
Example
With 4 input images
| Image 1 | Image 2 | Image 3 | Image 4 |
|---|---|---|---|
![]() |
![]() |
![]() |
![]() |
Output mosaic augmented image with YOLO format
| Mosaic-augmented image | Image with bboxes |
|---|---|
![]() |
![]() |
Notes
- Original images in the folder
images - Orginal labels (bounding boxes) in the folder
labels - Image and label have the same name. For example: img_0.jpeg - img_0.txt.
- Format of image can be: .jpg, .jpeg, .png ...
- Mosaic-augmented images will be in the folder
augmentation/mosaic_images. New labels will be in the folderaugmentation/mosaic_labels. These folder will be automatically created when you run the code above.





