Generated: 12/12/2024 Last modified: 19/11/2025
This repository contains all scripts, data structures, and figure-generation code used in the study:
“Spatial single-cell multiomics reveals peripheral immune dysfunction in Parkinson’s and inflammatory bowel disease”
The dataset includes measurements acquired using NanoString CosMx™ Spatial Multiomics in 2023, comprising:
- CosMx RNA profiling
- CosMx Protein profiling
Analyses were performed using:
- R ≥ 4.3.2
- Python ≥ 3.8.10
Environment dependencies are provided in:
requirements_python.txtrequirements_r.txt
Directory reserved for raw input data (not included in this repository).
Users should place their CosMx raw files here to reproduce the analysis.
Contains complete analysis pipelines for both modalities:
- CosMx_Protein/
- CosMx_RNA/
Each includes a detailed README describing preprocessing, QC, annotation, interaction analysis, and intermediate outputs.
Code to reproduce every figure included in the manuscript.
requirements_python.txt– Python environment (cell–interaction pipeline)requirements_r.txt– R environment (full CosMx workflow)
This repository uses a structured, modular naming scheme for methodical and reproducible analysis.
Scripts follow numeric prefixes to reflect the analysis workflow:
0_*→ Curation & raw processing1_*→ Annotation or normalization (modality-specific)2_*→ Cell typing workflows- Includes both
.Rand.pyscripts when required
- Includes both
3_*→ Cell–cell interaction (scotia pipeline)
Additional analysis utilities include:
abundance_enrichment.Rscotia_cell_int.py
Subfolders indicate the nature of stored data:
Files/– intermediate filesMolecules/– molecule-level CosMx outputsPolygons/– segmentation polygonsObjects/– Seurat objects or metadataMarkers/– marker definitions used in annotationResults/– exported results and final outputs
Figures follow the convention:
figure1.R, figure2.R, … sup_figN.R
Image exports are stored within:
figures/plots/
├── CosMx-Bolen.Rproj
├── LICENSE
├── README.md
├── README.html
├── image.png
├── requirements_python.txt
├── requirements_r.txt
│
├── analysis/
│ ├── CosMx_Protein/
│ │ ├── 0_curation.R
│ │ ├── 1_normalization.R
│ │ ├── 2.0_celltyping.R
│ │ ├── 2.1_celltyping.py
│ │ ├── 2.2_celltyping.R
│ │ ├── 3_cell_interaction.R
│ │ ├── abundances_enrichment.R
│ │ ├── scotia_cell_int.py
│ │ ├── Files/
│ │ ├── Objects/
│ │ │ └── db.csv
│ │ ├── Polygons/
│ │ ├── Results/
│ │ └── Ensembl Cosmx protein.xlsx
│ │
│ └── CosMx_RNA/
│ ├── 0_curation.R
│ ├── 1_annotation_supervised.R
│ ├── 2.normalization.R
│ ├── 3_cell_interaction.R
│ ├── abundance_enrichment.R
│ ├── Files/
│ ├── Markers/
│ ├── Molecules/
│ ├── Objects/
│ ├── Polygons/
│ └── Results/
│
├── data/
│
└── figures/
├── figure1.R
├── figure2.R
├── figure3.R
├── figure4.R
├── figure6.R
├── plots/
├── sup_fig1.R
├── sup_fig3.R
├── sup_fig4.R
├── sup_fig5.R
├── sup_fig6.R
└── sup_fig7.R
Both CosMx RNA and Protein pipelines follow a standardized workflow:
-
Curation
- Create Seurat objects
- Extract molecules, polygons, objects into separate folders to maintain structure and reduce memory load
-
Normalization & QC
-
Cell Annotation
- Supervised annotation workflow
-
Abundance & Enrichment Analysis
-
Cell–Cell Interaction
- Implemented using the scotia Python-based pipeline (
scotia_cell_int.py)
- Implemented using the scotia Python-based pipeline (
This research was funded in whole or in part by Aligning Science Across Parkinson’s (ASAP-020527) through the Michael J. Fox Foundation for Parkinson’s Research (MJFF).
MIT LICENSE.
If using data or code from this folder, cite:
Bolen et al., 2025. Spatial single-cell multiomics reveals peripheral immune dysfunction in Parkinson’s and inflammatory bowel disease.
