Skip to content

Commit 45b9ae7

Browse files
committed
Add fprodcl2lem to iset.mm
Stated as in set.mm. The proof could be similar to the proof of fsumcl2lem , which uses seq and some if statements. But instead we prove it by finite set induction and product notation directly, which leads to a shorter proof (1490 bytes compressed compared with 2096 bytes compressed) which also is perhaps a bit clearer.
1 parent ce1b769 commit 45b9ae7

File tree

1 file changed

+39
-0
lines changed

1 file changed

+39
-0
lines changed

iset.mm

Lines changed: 39 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -124549,6 +124549,45 @@ seq n ( x. ,
124549124549
OVPVQVR $.
124550124550
$}
124551124551

124552+
${
124553+
fprodcllem.1 $e |- ( ph -> S C_ CC ) $.
124554+
fprodcllem.2 $e |- ( ( ph /\ ( x e. S /\ y e. S ) ) ->
124555+
( x x. y ) e. S ) $.
124556+
fprodcllem.3 $e |- ( ph -> A e. Fin ) $.
124557+
fprodcllem.4 $e |- ( ( ph /\ k e. A ) -> B e. S ) $.
124558+
124559+
${
124560+
$d A f k m x $. $d A k w y z $. $d B f m x $. $d B u v y $.
124561+
$d B w y z $. $d S f k x y $. $d S k u v y $. $d S k w y z $.
124562+
$d f k m ph x $. $d ph w y z $. $d u x y $. $d v y z $.
124563+
fprodcl2lem.5 $e |- ( ph -> A =/= (/) ) $.
124564+
$( Finite product closure lemma. (Contributed by Scott Fenton,
124565+
14-Dec-2017.) (Revised by Jim Kingdon, 17-Aug-2024.) $)
124566+
fprodcl2lem $p |- ( ph -> prod_ k e. A B e. S ) $=
124567+
( vz wcel c0 wceq cv eleq1d wa cmul vw vu vv cprod neneqd csn cun eqeq1
124568+
wo prodeq1 orbi12d eqidd orcd cfn wss cdif csb co nfcsb1v simplr simprr
124569+
eldifbd ad3antrrr simplll simplrl simpr sseldd syl2anc ad2antrr eldifad
124570+
simpll wral ralrimiva nfv nfel1 csbeq1a cbvral sylib r19.21bi fprodunsn
124571+
cc adantr c1 prodeq1d prod0 eqtrdi oveq1d mulid2d eqtrd eqeltrd olcd ex
124572+
ralrimivva oveq1 oveq2 cbvral2v wi rspc2v mpd findcard2sd orcomd ecased
124573+
jaod ) ADEGUDZFNZDOPZADOLUEAXFXEAUAQZOPZXGEGUDZFNZUIOOPZOEGUDZFNZUICQZO
124574+
PZXNEGUDZFNZUIXNMQZUFUGZOPZXSEGUDZFNZUIZXFXEUIUACMDXHXHXKXJXMXGOOUHXHXI
124575+
XLFXGOEGUJRUKXGXNPZXHXOXJXQXGXNOUHYDXIXPFXGXNEGUJRUKXGXSPZXHXTXJYBXGXSO
124576+
UHYEXIYAFXGXSEGUJRUKXGDPZXHXFXJXEXGDOUHYFXIXDFXGDEGUJRUKAXKXMAOULUMAXNU
124577+
NNZSZXNDUOZXRDXNUPZNZSZSZXOYCXQYMXOYCYMXOSZYBXTYNYAXPGXREUQZTURZFYMYAYP
124578+
PZXOYMXNXREYOGYJGXREUSZAYGYLUTYHYIYKVAZYMXRDXNYSVBYMGQZXNNZSZFWAEAFWAUO
124579+
ZYGYLUUAHVCUUBAYTDNEFNZAYGYLUUAVDUUBXNDYTYHYIYKUUAVEYMUUAVFVGKVHVGYMFWA
124580+
YOAUUCYGYLHVIYMAXRDNYOFNZAYGYLVKYMXRDXNYSVJAUUEMDAUUDGDVLUUEMDVLAUUDGDK
124581+
VMUUDUUEGMDUUDMVNGYOFYRVOYTXRPEYOFGXREVPZRVQVRVSVHZVGZUUFVTZWBYNYPYOFYN
124582+
YPWCYOTURYOYNXPWCYOTYNXPXLWCYNXNOEGYMXOVFWDEGWEWFWGYNYOYMYOWANXOUUHWBWH
124583+
WIYMUUEXOUUGWBWJWJWKWLYMXQYCYMXQSZYBXTUUJYAYPFYMYQXQUUIWBUUJUBQZUCQZTUR
124584+
ZFNZUCFVLUBFVLZYPFNZAUUOYGYLXQABQZXNTURZFNZCFVLBFVLUUOAUUSBCFFIWMUUSUUN
124585+
UUKXNTURZFNBCUBUCFFUUQUUKPUURUUTFUUQUUKXNTWNRXNUULPUUTUUMFXNUULUUKTWORW
124586+
PVRVCUUJXQUUEUUOUUPWQYMXQVFYMUUEXQUUGWBUUNUUPXPUULTURZFNUBUCXPYOFFUUKXP
124587+
PUUMUVAFUUKXPUULTWNRUULYOPUVAYPFUULYOXPTWORWRVHWSWJWKWLXCJWTXAXB $.
124588+
$}
124589+
$}
124590+
124552124591

124553124592
$(
124554124593
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#

0 commit comments

Comments
 (0)