Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
98 changes: 81 additions & 17 deletions src/llama.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1299,10 +1299,15 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
},
},
{
Expand Down Expand Up @@ -2358,6 +2363,7 @@ enum e_model {
MODEL_1B,
MODEL_1_3B,
MODEL_1_4B,
MODEL_1_5B,
MODEL_2B,
MODEL_2_8B,
MODEL_3B,
Expand All @@ -2375,6 +2381,7 @@ enum e_model {
MODEL_16B,
MODEL_20B,
MODEL_30B,
MODEL_32B,
MODEL_34B,
MODEL_35B,
MODEL_40B,
Expand Down Expand Up @@ -2416,7 +2423,6 @@ static const char * llama_expert_gating_func_name(llm_expert_gating_func_type ty
}



struct llama_hparams {
bool vocab_only;
bool rope_finetuned;
Expand Down Expand Up @@ -4959,6 +4965,7 @@ static const char * llama_model_type_name(e_model type) {
case MODEL_1B: return "1B";
case MODEL_1_3B: return "1.3B";
case MODEL_1_4B: return "1.4B";
case MODEL_1_5B: return "1.5B";
case MODEL_2B: return "2B";
case MODEL_2_8B: return "2.8B";
case MODEL_3B: return "3B";
Expand All @@ -4976,6 +4983,7 @@ static const char * llama_model_type_name(e_model type) {
case MODEL_16B: return "16B";
case MODEL_20B: return "20B";
case MODEL_30B: return "30B";
case MODEL_32B: return "32B";
case MODEL_34B: return "34B";
case MODEL_35B: return "35B";
case MODEL_40B: return "40B";
Expand Down Expand Up @@ -5676,9 +5684,21 @@ static void llm_load_hparams(
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 28: model.type = e_model::MODEL_6B; break;
case 40: model.type = e_model::MODEL_9B; break;
default: model.type = e_model::MODEL_UNKNOWN;
case 28: {
if (hparams.n_head(0) == 16) {
model.type = MODEL_1_5B;
model.type = MODEL_6B;
}
} break;
case 40: {
if (hparams.n_head(0) == 24) {
model.type = MODEL_4B;
} else {
model.type = MODEL_9B;
}
} break;
case 61: model.type = MODEL_32B; break;
default: model.type = MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_BITNET:
Expand Down Expand Up @@ -5977,6 +5997,7 @@ static void llm_load_vocab(
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_PORO;
vocab.tokenizer_clean_spaces = false;
} else if (
tokenizer_pre == "glm4" ||
tokenizer_pre == "chatglm-bpe") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_CHATGLM4;
vocab.special_bos_id = -1;
Expand Down Expand Up @@ -8259,17 +8280,29 @@ static bool llm_load_tensors(
auto & layer = model.layers[i];

layer.attn_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.wqkv = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.bqkv = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);

layer.wqkv = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + (hparams.n_embd_head_k << 2)});
layer.bqkv = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + (hparams.n_embd_head_k << 2)});
if (layer.wqkv == nullptr) {
layer.wq = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
layer.wk = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
layer.wv = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
layer.bq = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.bk = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.bv = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
}

layer.wo = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});

layer.attn_post_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);

layer.ffn_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});

layer.ffn_up = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2});

layer.ffn_down = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});

layer.ffn_post_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
}
} break;
default:
Expand Down Expand Up @@ -15193,16 +15226,30 @@ struct llm_build_context {
struct ggml_tensor * Kcur = nullptr;
struct ggml_tensor * Vcur = nullptr;

cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);

cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);

Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));

if (model.layers[il].wqkv == nullptr) {
Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
}
Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
}
Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
}
} else {
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
if (model.layers[il].bqkv) {
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
}
Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Expand All @@ -15224,7 +15271,6 @@ struct llm_build_context {
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
model.layers[il].wo, NULL,
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);

}

if (il == n_layer - 1) {
Expand All @@ -15234,12 +15280,22 @@ struct llm_build_context {
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}

// Post-attention norm (Glm4-Z)
if (model.layers[il].attn_post_norm){
cur = llm_build_norm(ctx0, cur, hparams,
model.layers[il].attn_post_norm,
NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "post_attn_norm", il);
}

// Add the input
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);

// FF
{
// Pre-MLP norm
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm,
NULL,
Expand All @@ -15254,6 +15310,14 @@ struct llm_build_context {
LLM_FFN_SWIGLU, LLM_FFN_SEQ, cb, il);
cb(cur, "ffn_out", il);

// Post-MLP norm
if(model.layers[il].ffn_post_norm){
cur = llm_build_norm(ctx0, cur, hparams,
model.layers[il].ffn_post_norm,
NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "post_mlp_norm", il);
}
}

inpL = ggml_add(ctx0, cur, ffn_inp);
Expand Down