Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 24 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -168,3 +168,27 @@ python enjoy.py --load-dir trained_models/ppo --env-name "Reacher-v2"
![QbertNoFrameskip-v4](imgs/acktr_qbert.png)

![beamriderNoFrameskip-v4](imgs/acktr_beamrider.png)

## Visualization with tensorboard.

### Requirements

* [Tensorboard](https://github.com/tensorflow/tensorboard)
* [tensorboardX](https://github.com/lanpa/tensorboardX)

### Installation of requirements

```bash
pip install tensorboard
pip install tensorboardX
```

### Using tensorboard to visualize training

```bash
python main.py --env-name "PongNoFrameskip-v4" --algo ppo --use-gae --lr 2.5e-4 --clip-param 0.1 --value-loss-coef 1 --num-processes 8 --num-steps 128 --num-mini-batch 4 --vis-interval 1 --log-interval 1 --tensorboard-logdir "/tmp/tfboard"
tensorboard --logdir "/tmp/tfboard"
```

In a browser open [localhost:6006](http://localhost:6006). Note that a new folder is created every time training is
started with the current timestamp.
2 changes: 2 additions & 0 deletions arguments.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,8 @@ def get_args():
help='enable visdom visualization')
parser.add_argument('--port', type=int, default=8097,
help='port to run the server on (default: 8097)')
parser.add_argument('--tensorboard-logdir', default=None,
help='logs to tensorboard in the specified directory')
args = parser.parse_args()

args.cuda = not args.no_cuda and torch.cuda.is_available()
Expand Down
19 changes: 18 additions & 1 deletion main.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,6 +58,13 @@ def main():
viz = Visdom(port=args.port)
win = None

tensorboard_writer = None
if args.tensorboard_logdir is not None:
from tensorboardX import SummaryWriter
import datetime
ts_str = datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d_%H-%M-%S')
tensorboard_writer = SummaryWriter(log_dir=os.path.join(args.tensorboard_logdir, ts_str))

envs = make_vec_envs(args.env_name, args.seed, args.num_processes,
args.gamma, args.log_dir, args.add_timestep, device, False)

Expand Down Expand Up @@ -150,9 +157,19 @@ def main():
np.mean(episode_rewards),
np.median(episode_rewards),
np.min(episode_rewards),
np.max(episode_rewards), dist_entropy,
np.max(episode_rewards),
dist_entropy,
value_loss, action_loss))

if tensorboard_writer is not None:
tensorboard_writer.add_scalar("mean_reward", np.mean(episode_rewards), total_num_steps)
tensorboard_writer.add_scalar("median_reward", np.median(episode_rewards), total_num_steps)
tensorboard_writer.add_scalar("min_reward", np.min(episode_rewards), total_num_steps)
tensorboard_writer.add_scalar("max_reward", np.max(episode_rewards), total_num_steps)
tensorboard_writer.add_scalar("dist_entropy", dist_entropy, total_num_steps)
tensorboard_writer.add_scalar("value_loss", value_loss, total_num_steps)
tensorboard_writer.add_scalar("action_loss", action_loss, total_num_steps)

if (args.eval_interval is not None
and len(episode_rewards) > 1
and j % args.eval_interval == 0):
Expand Down