Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/workflows/CI-CheckBy.yml
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ jobs:
version:
- release
- lts
- nightly
# - nightly
os:
- ubuntu-latest
# - macOS-latest
Expand Down
72 changes: 18 additions & 54 deletions src/icnf.jl
Original file line number Diff line number Diff line change
Expand Up @@ -120,7 +120,7 @@ function augmented_f(
n_aug = n_augment(icnf, mode)
snn = LuxCore.StatefulLuxLayer{true}(nn, p, st)
z = u[begin:(end - n_aug - 1)]
ż, J = DifferentiationInterface.value_and_jacobian(snn, icnf.compute_mode.adback, z)
ż, J = icnf_jacobian(icnf, mode, snn, z)
l̇ = -LinearAlgebra.tr(J)
return vcat(ż, l̇)
end
Expand All @@ -139,7 +139,7 @@ function augmented_f(
n_aug = n_augment(icnf, mode)
snn = LuxCore.StatefulLuxLayer{true}(nn, p, st)
z = u[begin:(end - n_aug - 1)]
ż, J = DifferentiationInterface.value_and_jacobian(snn, icnf.compute_mode.adback, z)
ż, J = icnf_jacobian(icnf, mode, snn, z)
du[begin:(end - n_aug - 1)] .= ż
du[(end - n_aug)] = -LinearAlgebra.tr(J)
return nothing
Expand All @@ -158,8 +158,8 @@ function augmented_f(
n_aug = n_augment(icnf, mode)
snn = LuxCore.StatefulLuxLayer{true}(nn, p, st)
z = u[begin:(end - n_aug - 1), :]
ż, J = jacobian_batched(icnf, snn, z)
l̇ = -transpose(LinearAlgebra.tr.(J))
ż, J = icnf_jacobian(icnf, mode, snn, z)
l̇ = -transpose(LinearAlgebra.tr.(eachslice(J; dims = 3)))
return vcat(ż, l̇)
end

Expand All @@ -177,9 +177,9 @@ function augmented_f(
n_aug = n_augment(icnf, mode)
snn = LuxCore.StatefulLuxLayer{true}(nn, p, st)
z = u[begin:(end - n_aug - 1), :]
ż, J = jacobian_batched(icnf, snn, z)
ż, J = icnf_jacobian(icnf, mode, snn, z)
du[begin:(end - n_aug - 1), :] .= ż
du[(end - n_aug), :] .= -(LinearAlgebra.tr.(J))
du[(end - n_aug), :] .= -(LinearAlgebra.tr.(eachslice(J; dims = 3)))
return nothing
end

Expand All @@ -196,9 +196,7 @@ function augmented_f(
n_aug = n_augment(icnf, mode)
snn = LuxCore.StatefulLuxLayer{true}(nn, p, st)
z = u[begin:(end - n_aug - 1)]
ż, ϵJ =
DifferentiationInterface.value_and_pullback(snn, icnf.compute_mode.adback, z, (ϵ,))
ϵJ = only(ϵJ)
ż, ϵJ = icnf_jacobian(icnf, mode, snn, z, ϵ)
l̇ = -LinearAlgebra.dot(ϵJ, ϵ)
Ė = if NORM_Z
LinearAlgebra.norm(ż)
Expand Down Expand Up @@ -227,9 +225,7 @@ function augmented_f(
n_aug = n_augment(icnf, mode)
snn = LuxCore.StatefulLuxLayer{true}(nn, p, st)
z = u[begin:(end - n_aug - 1)]
ż, ϵJ =
DifferentiationInterface.value_and_pullback(snn, icnf.compute_mode.adback, z, (ϵ,))
ϵJ = only(ϵJ)
ż, ϵJ = icnf_jacobian(icnf, mode, snn, z, ϵ)
du[begin:(end - n_aug - 1)] .= ż
du[(end - n_aug)] = -LinearAlgebra.dot(ϵJ, ϵ)
du[(end - n_aug + 1)] = if NORM_Z
Expand Down Expand Up @@ -258,13 +254,7 @@ function augmented_f(
n_aug = n_augment(icnf, mode)
snn = LuxCore.StatefulLuxLayer{true}(nn, p, st)
z = u[begin:(end - n_aug - 1)]
ż, Jϵ = DifferentiationInterface.value_and_pushforward(
snn,
icnf.compute_mode.adback,
z,
(ϵ,),
)
Jϵ = only(Jϵ)
ż, Jϵ = icnf_jacobian(icnf, mode, snn, z, ϵ)
l̇ = -LinearAlgebra.dot(ϵ, Jϵ)
Ė = if NORM_Z
LinearAlgebra.norm(ż)
Expand Down Expand Up @@ -293,13 +283,7 @@ function augmented_f(
n_aug = n_augment(icnf, mode)
snn = LuxCore.StatefulLuxLayer{true}(nn, p, st)
z = u[begin:(end - n_aug - 1)]
ż, Jϵ = DifferentiationInterface.value_and_pushforward(
snn,
icnf.compute_mode.adback,
z,
(ϵ,),
)
Jϵ = only(Jϵ)
ż, Jϵ = icnf_jacobian(icnf, mode, snn, z, ϵ)
du[begin:(end - n_aug - 1)] .= ż
du[(end - n_aug)] = -LinearAlgebra.dot(ϵ, Jϵ)
du[(end - n_aug + 1)] = if NORM_Z
Expand Down Expand Up @@ -328,9 +312,7 @@ function augmented_f(
n_aug = n_augment(icnf, mode)
snn = LuxCore.StatefulLuxLayer{true}(nn, p, st)
z = u[begin:(end - n_aug - 1), :]
ż, ϵJ =
DifferentiationInterface.value_and_pullback(snn, icnf.compute_mode.adback, z, (ϵ,))
ϵJ = only(ϵJ)
ż, ϵJ = icnf_jacobian(icnf, mode, snn, z, ϵ)
l̇ = -sum(ϵJ .* ϵ; dims = 1)
Ė = transpose(if NORM_Z
LinearAlgebra.norm.(eachcol(ż))
Expand Down Expand Up @@ -363,9 +345,7 @@ function augmented_f(
n_aug = n_augment(icnf, mode)
snn = LuxCore.StatefulLuxLayer{true}(nn, p, st)
z = u[begin:(end - n_aug - 1), :]
ż, ϵJ =
DifferentiationInterface.value_and_pullback(snn, icnf.compute_mode.adback, z, (ϵ,))
ϵJ = only(ϵJ)
ż, ϵJ = icnf_jacobian(icnf, mode, snn, z, ϵ)
du[begin:(end - n_aug - 1), :] .= ż
du[(end - n_aug), :] .= -vec(sum(ϵJ .* ϵ; dims = 1))
du[(end - n_aug + 1), :] .= if NORM_Z
Expand Down Expand Up @@ -394,13 +374,7 @@ function augmented_f(
n_aug = n_augment(icnf, mode)
snn = LuxCore.StatefulLuxLayer{true}(nn, p, st)
z = u[begin:(end - n_aug - 1), :]
ż, Jϵ = DifferentiationInterface.value_and_pushforward(
snn,
icnf.compute_mode.adback,
z,
(ϵ,),
)
Jϵ = only(Jϵ)
ż, Jϵ = icnf_jacobian(icnf, mode, snn, z, ϵ)
l̇ = -sum(ϵ .* Jϵ; dims = 1)
Ė = transpose(if NORM_Z
LinearAlgebra.norm.(eachcol(ż))
Expand Down Expand Up @@ -433,13 +407,7 @@ function augmented_f(
n_aug = n_augment(icnf, mode)
snn = LuxCore.StatefulLuxLayer{true}(nn, p, st)
z = u[begin:(end - n_aug - 1), :]
ż, Jϵ = DifferentiationInterface.value_and_pushforward(
snn,
icnf.compute_mode.adback,
z,
(ϵ,),
)
Jϵ = only(Jϵ)
ż, Jϵ = icnf_jacobian(icnf, mode, snn, z, ϵ)
du[begin:(end - n_aug - 1), :] .= ż
du[(end - n_aug), :] .= -vec(sum(ϵ .* Jϵ; dims = 1))
du[(end - n_aug + 1), :] .= if NORM_Z
Expand Down Expand Up @@ -468,8 +436,7 @@ function augmented_f(
n_aug = n_augment(icnf, mode)
snn = LuxCore.StatefulLuxLayer{true}(nn, p, st)
z = u[begin:(end - n_aug - 1), :]
ż = snn(z)
ϵJ = Lux.vector_jacobian_product(snn, icnf.compute_mode.adback, z, ϵ)
ż, ϵJ = icnf_jacobian(icnf, mode, snn, z, ϵ)
l̇ = -sum(ϵJ .* ϵ; dims = 1)
Ė = transpose(if NORM_Z
LinearAlgebra.norm.(eachcol(ż))
Expand Down Expand Up @@ -502,8 +469,7 @@ function augmented_f(
n_aug = n_augment(icnf, mode)
snn = LuxCore.StatefulLuxLayer{true}(nn, p, st)
z = u[begin:(end - n_aug - 1), :]
ż = snn(z)
ϵJ = Lux.vector_jacobian_product(snn, icnf.compute_mode.adback, z, ϵ)
ż, ϵJ = icnf_jacobian(icnf, mode, snn, z, ϵ)
du[begin:(end - n_aug - 1), :] .= ż
du[(end - n_aug), :] .= -vec(sum(ϵJ .* ϵ; dims = 1))
du[(end - n_aug + 1), :] .= if NORM_Z
Expand Down Expand Up @@ -532,8 +498,7 @@ function augmented_f(
n_aug = n_augment(icnf, mode)
snn = LuxCore.StatefulLuxLayer{true}(nn, p, st)
z = u[begin:(end - n_aug - 1), :]
ż = snn(z)
Jϵ = Lux.jacobian_vector_product(snn, icnf.compute_mode.adback, z, ϵ)
ż, Jϵ = icnf_jacobian(icnf, mode, snn, z, ϵ)
l̇ = -sum(ϵ .* Jϵ; dims = 1)
Ė = transpose(if NORM_Z
LinearAlgebra.norm.(eachcol(ż))
Expand Down Expand Up @@ -566,8 +531,7 @@ function augmented_f(
n_aug = n_augment(icnf, mode)
snn = LuxCore.StatefulLuxLayer{true}(nn, p, st)
z = u[begin:(end - n_aug - 1), :]
ż = snn(z)
Jϵ = Lux.jacobian_vector_product(snn, icnf.compute_mode.adback, z, ϵ)
ż, Jϵ = icnf_jacobian(icnf, mode, snn, z, ϵ)
du[begin:(end - n_aug - 1), :] .= ż
du[(end - n_aug), :] .= -vec(sum(ϵ .* Jϵ; dims = 1))
du[(end - n_aug + 1), :] .= if NORM_Z
Expand Down
159 changes: 125 additions & 34 deletions src/utils.jl
Original file line number Diff line number Diff line change
@@ -1,74 +1,165 @@
function jacobian_batched(
function icnf_jacobian(
icnf::AbstractICNF{<:AbstractFloat, <:DIVectorMode},
::TestMode,
f::LuxCore.StatefulLuxLayer,
xs::AbstractVector{<:Real},
)
y = f(xs)
return y,
oftype(hcat(y), DifferentiationInterface.jacobian(f, icnf.compute_mode.adback, xs))
end

function icnf_jacobian(
icnf::AbstractICNF{<:AbstractFloat, <:DIMatrixMode},
::TestMode,
f::LuxCore.StatefulLuxLayer,
xs::AbstractMatrix{<:Real},
)
y = f(xs)
J = DifferentiationInterface.jacobian(f, icnf.compute_mode.adback, xs)
return y,
oftype(
cat(y; dims = Val(3)),
cat(
(
J[i:j, i:j] for (i, j) in zip(
firstindex(J, 1):size(y, 1):lastindex(J, 1),
(firstindex(J, 1) + size(y, 1) - 1):size(y, 1):lastindex(J, 1),
)
)...;
dims = Val(3),
),
)
end

function icnf_jacobian(
icnf::AbstractICNF{T, <:DIVecJacMatrixMode},
::TestMode,
f::LuxCore.StatefulLuxLayer,
xs::AbstractMatrix{<:Real},
) where {T}
) where {T <: AbstractFloat}
y = f(xs)
z = similar(xs)
ChainRulesCore.@ignore_derivatives fill!(z, zero(T))
res = Zygote.Buffer(
convert.(promote_type(eltype(xs), eltype(f.ps)), xs),
size(xs, 1),
size(xs, 1),
size(xs, 2),
)
res = Zygote.Buffer(y, size(xs, 1), size(xs, 1), size(xs, 2))
for i in axes(xs, 1)
ChainRulesCore.@ignore_derivatives z[i, :] .= one(T)
res[i, :, :] =
only(DifferentiationInterface.pullback(f, icnf.compute_mode.adback, xs, (z,)))
ChainRulesCore.@ignore_derivatives z[i, :] .= zero(T)
end
return y, eachslice(copy(res); dims = 3)
return y, oftype(cat(y; dims = Val(3)), copy(res))
end

function jacobian_batched(
function icnf_jacobian(
icnf::AbstractICNF{T, <:DIJacVecMatrixMode},
::TestMode,
f::LuxCore.StatefulLuxLayer,
xs::AbstractMatrix{<:Real},
) where {T}
) where {T <: AbstractFloat}
y = f(xs)
z = similar(xs)
ChainRulesCore.@ignore_derivatives fill!(z, zero(T))
res = Zygote.Buffer(
convert.(promote_type(eltype(xs), eltype(f.ps)), xs),
size(xs, 1),
size(xs, 1),
size(xs, 2),
)
res = Zygote.Buffer(y, size(xs, 1), size(xs, 1), size(xs, 2))
for i in axes(xs, 1)
ChainRulesCore.@ignore_derivatives z[i, :] .= one(T)
res[:, i, :] = only(
DifferentiationInterface.pushforward(f, icnf.compute_mode.adback, xs, (z,)),
)
ChainRulesCore.@ignore_derivatives z[i, :] .= zero(T)
end
return y, eachslice(copy(res); dims = 3)
return y, oftype(cat(y; dims = Val(3)), copy(res))
end

function jacobian_batched(
icnf::AbstractICNF{T, <:DIMatrixMode},
function icnf_jacobian(
icnf::AbstractICNF{<:AbstractFloat, <:LuxMatrixMode},
::TestMode,
f::LuxCore.StatefulLuxLayer,
xs::AbstractMatrix{<:Real},
) where {T}
y, J = DifferentiationInterface.value_and_jacobian(f, icnf.compute_mode.adback, xs)
return y, split_jac(J, size(xs, 1))
)
y = f(xs)
return y,
oftype(cat(y; dims = Val(3)), Lux.batched_jacobian(f, icnf.compute_mode.adback, xs))
end

function split_jac(x::AbstractMatrix{<:Real}, sz::Integer)
return (
x[i:j, i:j] for (i, j) in zip(
firstindex(x, 1):sz:lastindex(x, 1),
(firstindex(x, 1) + sz - 1):sz:lastindex(x, 1),
)
function icnf_jacobian(
icnf::AbstractICNF{T, <:DIVecJacVectorMode},
::TrainMode,
f::LuxCore.StatefulLuxLayer,
xs::AbstractVector{<:Real},
ϵ::AbstractVector{T},
) where {T <: AbstractFloat}
y = f(xs)
return y,
oftype(
y,
only(DifferentiationInterface.pullback(f, icnf.compute_mode.adback, xs, (ϵ,))),
)
end

function icnf_jacobian(
icnf::AbstractICNF{T, <:DIJacVecVectorMode},
::TrainMode,
f::LuxCore.StatefulLuxLayer,
xs::AbstractVector{<:Real},
ϵ::AbstractVector{T},
) where {T <: AbstractFloat}
y = f(xs)
return y,
oftype(
y,
only(DifferentiationInterface.pushforward(f, icnf.compute_mode.adback, xs, (ϵ,))),
)
end

function icnf_jacobian(
icnf::AbstractICNF{T, <:DIVecJacMatrixMode},
::TrainMode,
f::LuxCore.StatefulLuxLayer,
xs::AbstractMatrix{<:Real},
ϵ::AbstractMatrix{T},
) where {T <: AbstractFloat}
y = f(xs)
return y,
oftype(
y,
only(DifferentiationInterface.pullback(f, icnf.compute_mode.adback, xs, (ϵ,))),
)
end

function icnf_jacobian(
icnf::AbstractICNF{T, <:DIJacVecMatrixMode},
::TrainMode,
f::LuxCore.StatefulLuxLayer,
xs::AbstractMatrix{<:Real},
ϵ::AbstractMatrix{T},
) where {T <: AbstractFloat}
y = f(xs)
return y,
oftype(
y,
only(DifferentiationInterface.pushforward(f, icnf.compute_mode.adback, xs, (ϵ,))),
)
end

function jacobian_batched(
icnf::AbstractICNF{T, <:LuxMatrixMode},
function icnf_jacobian(
icnf::AbstractICNF{T, <:LuxVecJacMatrixMode},
::TrainMode,
f::LuxCore.StatefulLuxLayer,
xs::AbstractMatrix{<:Real},
ϵ::AbstractMatrix{T},
) where {T <: AbstractFloat}
y = f(xs)
return y, oftype(y, Lux.vector_jacobian_product(f, icnf.compute_mode.adback, xs, ϵ))
end

function icnf_jacobian(
icnf::AbstractICNF{T, <:LuxJacVecMatrixMode},
::TrainMode,
f::LuxCore.StatefulLuxLayer,
xs::AbstractMatrix{<:Real},
) where {T}
ϵ::AbstractMatrix{T},
) where {T <: AbstractFloat}
y = f(xs)
J = Lux.batched_jacobian(f, icnf.compute_mode.adback, xs)
return y, eachslice(J; dims = 3)
return y, oftype(y, Lux.jacobian_vector_product(f, icnf.compute_mode.adback, xs, ϵ))
end
Loading
Loading