|
| 1 | +# %% |
| 2 | +from sumpy.recurrence import _make_sympy_vec, get_reindexed_and_center_origin_on_axis_recurrence |
| 3 | + |
| 4 | +from sumpy.expansion.diff_op import ( |
| 5 | + laplacian, |
| 6 | + make_identity_diff_op, |
| 7 | +) |
| 8 | + |
| 9 | + |
| 10 | +import sympy as sp |
| 11 | +from sympy import hankel1 |
| 12 | + |
| 13 | +import numpy as np |
| 14 | + |
| 15 | +import math |
| 16 | + |
| 17 | +import matplotlib.pyplot as plt |
| 18 | +from matplotlib import cm, ticker |
| 19 | + |
| 20 | +# %% |
| 21 | +w = make_identity_diff_op(2) |
| 22 | +laplace2d = laplacian(w) |
| 23 | +n_init_lap, order_lap, recur_laplace = get_reindexed_and_center_origin_on_axis_recurrence(laplace2d) |
| 24 | + |
| 25 | +w = make_identity_diff_op(2) |
| 26 | +helmholtz2d = laplacian(w) + w |
| 27 | +n_init_helm, order_helm, recur_helmholtz = get_reindexed_and_center_origin_on_axis_recurrence(helmholtz2d) |
| 28 | + |
| 29 | +# %% |
| 30 | +var = _make_sympy_vec("x", 2) |
| 31 | +rct = sp.symbols("r_{ct}") |
| 32 | +s = sp.Function("s") |
| 33 | +n = sp.symbols("n") |
| 34 | + |
| 35 | +# %% |
| 36 | +def compute_derivatives(p): |
| 37 | + var = _make_sympy_vec("x", 2) |
| 38 | + var_t = _make_sympy_vec("t", 2) |
| 39 | + g_x_y = sp.log(sp.sqrt((var[0]-var_t[0])**2 + (var[1]-var_t[1])**2)) |
| 40 | + derivs = [sp.diff(g_x_y, |
| 41 | + var_t[0], i).subs(var_t[0], 0).subs(var_t[1], 0) |
| 42 | + for i in range(p)] |
| 43 | + return derivs |
| 44 | +l_max = 10 |
| 45 | +derivs_laplace = compute_derivatives(l_max) |
| 46 | + |
| 47 | +# %% |
| 48 | +def compute_derivatives_h2d(p): |
| 49 | + k = 1 |
| 50 | + var = _make_sympy_vec("x", 2) |
| 51 | + var_t = _make_sympy_vec("t", 2) |
| 52 | + abs_dist = sp.sqrt((var[0]-var_t[0])**2 + |
| 53 | + (var[1]-var_t[1])**2) |
| 54 | + g_x_y = (1j/4) * hankel1(0, k * abs_dist) |
| 55 | + derivs_helmholtz = [sp.diff(g_x_y, |
| 56 | + var_t[0], i).subs(var_t[0], 0).subs(var_t[1], 0) |
| 57 | + for i in range(p)] |
| 58 | + return derivs_helmholtz |
| 59 | +h_max = 8 |
| 60 | +#derivs_helmholtz = compute_derivatives_h2d(h_max) |
| 61 | + |
| 62 | +# %% |
| 63 | +def evaluate_recurrence_lamb(coord_dict, recur, p, derivs_list, n_initial, n_order): |
| 64 | + s = sp.Function("s") |
| 65 | + subs_dict = {} |
| 66 | + for i in range(n_initial-n_order, 0): |
| 67 | + subs_dict[s(i)] = 0 |
| 68 | + for i in range(n_initial): |
| 69 | + subs_dict[s(i)] = derivs_list[i].subs(coord_dict) |
| 70 | + var = _make_sympy_vec("x", 2) |
| 71 | + for i in range(n_initial, p): |
| 72 | + exp = recur.subs(n, i) |
| 73 | + f = sp.lambdify([var[0], var[1]] + [s(i-(1+k)) for k in range(n_order-1)], exp) |
| 74 | + subs_dict[s(i)] = f(*([coord_dict[var[0]], coord_dict[var[1]]] + [subs_dict[s(i-(1+k))] for k in range(n_order-1)])) |
| 75 | + for i in range(n_initial-n_order, 0): |
| 76 | + subs_dict.pop(s(i)) |
| 77 | + return np.array(list(subs_dict.values())) |
| 78 | + |
| 79 | +# %% |
| 80 | +def evaluate_true(coord_dict, p, derivs_list): |
| 81 | + retMe = [] |
| 82 | + for i in range(p): |
| 83 | + exp = derivs_list[i] |
| 84 | + f = sp.lambdify(var, exp) |
| 85 | + retMe.append(f(coord_dict[var[0]], coord_dict[var[1]])) |
| 86 | + return np.array(retMe) |
| 87 | + |
| 88 | +# %% |
| 89 | +def compute_error_coord(recur, loc, order, derivs_list, n_initial, n_order): |
| 90 | + var = _make_sympy_vec("x", 2) |
| 91 | + coord_dict = {var[0]: loc[0], var[1]: loc[1]} |
| 92 | + |
| 93 | + exp = evaluate_recurrence_lamb(coord_dict, recur, order+1, derivs_list, n_initial, n_order)[order].evalf() |
| 94 | + |
| 95 | + true = derivs_list[order].subs(coord_dict).evalf() |
| 96 | + |
| 97 | + return (np.abs(exp-true)/np.abs(true)) |
| 98 | + |
| 99 | +# %% |
| 100 | +def generate_error_grid(res, order_plot, recur, derivs, n_initial, n_order): |
| 101 | + x_grid = [10**(pw) for pw in np.linspace(-8, 0, res)] |
| 102 | + y_grid = [10**(pw) for pw in np.linspace(-8, 0, res)] |
| 103 | + res=len(x_grid) |
| 104 | + plot_me = np.empty((res, res)) |
| 105 | + for i in range(res): |
| 106 | + for j in range(res): |
| 107 | + if abs(x_grid[i]) == abs(y_grid[j]): |
| 108 | + plot_me[i, j] = 1e-16 |
| 109 | + else: |
| 110 | + plot_me[i,j] = compute_error_coord(recur, np.array([x_grid[i],y_grid[j]]), order_plot, derivs, n_initial, n_order) |
| 111 | + if plot_me[i,j] == 0: |
| 112 | + plot_me[i, j] = 1e-16 |
| 113 | + return x_grid, y_grid, plot_me |
| 114 | + |
| 115 | +# %% |
| 116 | +order_plot = 5 |
| 117 | +#x_grid, y_grid, plot_me_hem = generate_error_grid(res=5, order_plot=order_plot, recur=recur_helmholtz, derivs=derivs_helmholtz, n_initial=n_init_helm, n_order=order_helm) |
| 118 | +x_grid, y_grid, plot_me_lap = generate_error_grid(res=10, order_plot=order_plot, recur=recur_laplace, derivs=derivs_laplace, n_initial=n_init_lap, n_order=order_lap) |
| 119 | +plot_me_hem = plot_me_lap |
| 120 | + |
| 121 | + |
| 122 | +fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 8)) |
| 123 | +cs = ax1.contourf(x_grid, y_grid, plot_me_hem.T, locator=ticker.LogLocator(), cmap=cm.PuBu_r) |
| 124 | +cbar = fig.colorbar(cs) |
| 125 | + |
| 126 | +cs = ax2.contourf(x_grid, y_grid, plot_me_lap.T, locator=ticker.LogLocator(), cmap=cm.PuBu_r) |
| 127 | +cbar = fig.colorbar(cs) |
| 128 | +ax1.set_xscale('log') |
| 129 | +ax1.set_yscale('log') |
| 130 | +ax1.set_xlabel("source x-coord", fontsize=15) |
| 131 | +ax1.set_ylabel("source y-coord", fontsize=15) |
| 132 | + |
| 133 | + |
| 134 | +ax2.set_xscale('log') |
| 135 | +ax2.set_yscale('log') |
| 136 | +ax2.set_xlabel("source x-coord", fontsize=15) |
| 137 | +ax2.set_ylabel("source y-coord", fontsize=15) |
| 138 | + |
| 139 | +ax1.set_title("Helmholtz recurrence relative error for order = "+str(order_plot), fontsize=15) |
| 140 | +ax2.set_title("Laplace recurrence relative error for order = "+str(order_plot), fontsize=15) |
| 141 | + |
| 142 | +fig.savefig('order'+str(order_plot)) |
| 143 | +plt.show() |
| 144 | + |
| 145 | +# %% |
| 146 | + |
| 147 | + |
| 148 | + |
0 commit comments