Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/pins/pytorch-upstream.txt
Original file line number Diff line number Diff line change
@@ -1 +1 @@
0efa590d435d2b4aefcbad9014dd5fa75dcf8405
33dce10ece5b38aa0ab76739b658cd980a6e3d8f
27 changes: 27 additions & 0 deletions python/test/unit/runtime/test_cache.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
import triton
import triton.language as tl
from triton.runtime.jit import JITFunction
from triton._internal_testing import is_hip


@triton.jit
Expand Down Expand Up @@ -572,3 +573,29 @@ def compiled_hook(*args, **kwargs):
assert specialization_data is not None and specialization_data_compiled == specialization_data
assert is_warmup is True
assert key in kernel_add.cache[getattr(torch, device).current_device()]


@pytest.mark.skipif(reason="within_2g is a HIP specific optimization", condition=not is_hip())
def test_within_2gb(device, fresh_triton_cache) -> None:

@triton.jit
def kernel_add(a):
tl.load(a)

# This is the attribute we want to test
pointer_range_32 = None

def cache_hook(*args, **kwargs):
nonlocal pointer_range_32
pointer_range_32 = kwargs["compile"]["configs"][0].pointer_range_32

JITFunction.cache_hook = cache_hook
# In warmup we assume that the pointer range is 32 bits
kernel_add.warmup(torch.float32, grid=(1, ))
assert pointer_range_32 == [0]
# Torch tensor > 2GB
kernel_add[(1, 0)](torch.empty(2**31, dtype=torch.int8, device=device))
assert len(pointer_range_32) == 0
# Torch tensor <= 2GB
kernel_add[(1, 0)](torch.empty(2**31 - 1, dtype=torch.int8, device=device))
assert pointer_range_32 == [0]
54 changes: 39 additions & 15 deletions python/triton/backends/compiler.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,21 @@
from typing import Dict, Union
from types import ModuleType

# Table that associates strings to AttrsDescriptor (sub)classes.
# In this way we can dynamically select the correct class
# constructor
_descriptor_table = {}


def register_descriptor(cls):
"""
Register a descriptor into the descriptor table
"""
_descriptor_table[cls.__name__] = cls
return cls


@register_descriptor
class AttrsDescriptor:
"""
This class handles compile-time properties for specific function parameters.
Expand Down Expand Up @@ -135,18 +149,28 @@ def hash(self):
return hashlib.sha256(key.encode("utf-8")).hexdigest()

def to_dict(self):
return self.arg_properties
"""
Store the fields of this class in a serializable dictionary
"""
# We need to only store the `arg_properties` field. To initialize the
# other fields we relay on the class type. We store it as a string in
# the dictionary so that we can use it to invoke the appropriate
# (sub)class constructor in the `from_dict` method.
return {"arg_properties": self.arg_properties, "cls": type(self).__name__}

@staticmethod
def from_dict(data):
attrsDescriptor = AttrsDescriptor()
for prop_name, param_ids in data.items():
attrsDescriptor.arg_properties[prop_name] = param_ids
attrsDescriptor._init_slots()
return attrsDescriptor

@staticmethod
def from_hints(hints: list[tuple[int, int]]):
"""
Create the object from a serializable dictionary
"""
attrs_descriptor = _descriptor_table[data["cls"]]()
for prop_name, param_ids in data["arg_properties"].items():
attrs_descriptor.arg_properties[prop_name] = param_ids
attrs_descriptor._init_slots()
return attrs_descriptor

@classmethod
def from_hints(cls, hints: list[tuple[int, int]]):
"""
Create the class from a set of hints that are passed in.

Expand All @@ -156,11 +180,11 @@ def from_hints(hints: list[tuple[int, int]]):
then we insert `param_index` into the correct list (e.g., in
`arg_properties[prop0]`)
"""
attrsDescriptor = AttrsDescriptor()
for prop_name, prop_val in attrsDescriptor.property_values.items():
attrsDescriptor.arg_properties[prop_name] = [i for i, h in hints.items() if h == prop_val]
attrsDescriptor._init_slots()
return attrsDescriptor
attrs_descriptor = cls()
for prop_name, prop_val in attrs_descriptor.property_values.items():
attrs_descriptor.arg_properties[prop_name] = [i for i, h in hints.items() if h == prop_val]
attrs_descriptor._init_slots()
return attrs_descriptor

@staticmethod
def is_divisible_by_16(x):
Expand All @@ -187,7 +211,7 @@ def get_property_key(val, align):
return "N"

def __repr__(self):
return f"AttrsDescriptor.from_dict({self.arg_properties})"
return f"AttrsDescriptor.from_dict({self.to_dict()!r})"


@dataclass(frozen=True)
Expand Down
4 changes: 4 additions & 0 deletions python/triton/runtime/jit.py
Original file line number Diff line number Diff line change
Expand Up @@ -879,6 +879,10 @@ def __init__(self, dtype):
def data_ptr():
return 0 # optimistically assumes multiple of 16

@staticmethod
def ptr_range():
return 0 # optimistically assumes 32 bit pointer range


class TensorWrapper:

Expand Down
47 changes: 46 additions & 1 deletion third_party/amd/backend/compiler.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
from triton.backends.compiler import BaseBackend, GPUTarget
from triton.backends.compiler import BaseBackend, GPUTarget, AttrsDescriptor, register_descriptor
from triton._C.libtriton import ir, passes, llvm, amd
from dataclasses import dataclass
from typing import Any, Dict, Tuple
Expand Down Expand Up @@ -72,6 +72,44 @@ def hash(self):
return hashlib.sha256(key.encode("utf-8")).hexdigest()


@register_descriptor
class HIPAttrsDescriptor(AttrsDescriptor):
# This property asserts if the underlying storage area of a given pointer
# can be resepresented as a 32 bit integer. When this is true, we can be
# sure that all indices into the tensor behind that pointer can use 32-bit
# indexing. That opens the door for the AMD backend to use buffer load/store
# instrinsics, which requires this property. Buffer load/store intrinsics
# gives direct out-of-bound support and simplifies index calculation for
# lower register pressure.
__slots__ = ("pointer_range_32")

def _add_backend_properties(self, params=None, values=None):
self.property_values["tt.pointer_range"] = 32
if params is None or values is None:
return

self.arg_properties["tt.pointer_range"] = [
param.num for param, arg in zip(params, values) if HIPAttrsDescriptor.is_within2gb(arg)
and not param.do_not_specialize and not param.do_not_specialize_on_alignment
]

@staticmethod
def is_within2gb(arg):
if hasattr(arg, "ptr_range"):
return arg.ptr_range() <= 2**31 - 1
if "torch.Tensor" in str(type(arg)) and hasattr(arg, "untyped_storage"):
# Please note that 2**31-1 is the max int32 positive limit
return arg.untyped_storage().size() <= 2**31 - 1
return False

@staticmethod
def get_property_key(val, align):
generic_key = AttrsDescriptor.get_property_key(val, align)
hip_key = "S" if HIPAttrsDescriptor.is_within2gb(val) else "N"
key = (generic_key + hip_key).replace("N", "")
return key if key else "N"


class HIPBackend(BaseBackend):

@staticmethod
Expand Down Expand Up @@ -118,6 +156,13 @@ def get_module_map(self) -> Dict[str, ModuleType]:
def load_dialects(self, ctx):
amd.load_dialects(ctx)

def get_attrs_descriptor(self, params, args):
return HIPAttrsDescriptor(params, args)

@staticmethod
def compute_spec_key(arg, align):
return HIPAttrsDescriptor.get_property_key(arg, align)

@staticmethod
def path_to_rocm_lld():
# Check env path for ld.lld
Expand Down
Loading