Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
39 changes: 20 additions & 19 deletions benchmarks/triton_kernels_benchmark/gemm_benchmark.py
Original file line number Diff line number Diff line change
Expand Up @@ -227,28 +227,28 @@ def get_shapes(B, M, N, K, transpose_a, transpose_b):
@benchmark_suit.perf_report(
benchmark_suit.Benchmark(
# argument names to use as an x-axis for the plot
x_names=['B', 'M', 'K', 'N'],
x_names=['B', 'M', 'N', 'K'],
# different possible values for `x_name`
x_vals=[[1, 1024 * i, 1024 * i, 1024 * i] for i in [1, 2, 4, 8]] + #
[ #
[1, 1, 5120, 13824], #
[1, 4, 4096, 12288], #
[1, 1, 13824, 5120], #
[1, 4, 12288, 4096], #
[1, 512, 8192, 8192], #
[1, 512, 8192, 32768], #
[1, 512, 32768, 8192], #
[1, 1024, 16384, 8192], #
[1, 1024, 28672, 8192], #
[1, 3072, 4096, 3072], # FIXME: Remove this case when gemm_streamk_benchmark can get better performance
[1, 4096, 16384, 8192], #
[1, 8192, 16384, 1024], #
[1, 8192, 16384, 4096], #
[1, 1024, 8192, 16384], #
[1, 1024, 8192, 28672], #
[1, 3072, 3072, 4096], # FIXME: Remove this case when gemm_streamk_benchmark can get better performance
[1, 4096, 8192, 16384], #
[1, 8192, 1024, 16384], #
[1, 8192, 4096, 16384], #
[1, 16384, 1024, 8192], #
[1, 16384, 4096, 8192], #
[1, 16384, 8192, 1024], #
[1, 16384, 8192, 4096], #
[4, 32768, 128, 4096], #
[4, 32768, 4096, 128], #
[32, 4096, 4096, 128], #
[32, 4096, 128, 4096], #
[4096, 8, 128, 16384], #
[4096, 8, 16384, 128]
],
Expand All @@ -268,6 +268,7 @@ def get_shapes(B, M, N, K, transpose_a, transpose_b):
def benchmark(B, M, N, K, provider):
a_shape, b_shape = get_shapes(B, M, N, K, transpose_a=TRANSPOSE_A, transpose_b=TRANSPOSE_B)

torch.manual_seed(0)
a = torch.rand(a_shape, device='xpu', dtype=torch.bfloat16)
b = torch.rand(b_shape, device='xpu', dtype=torch.bfloat16)

Expand All @@ -291,10 +292,10 @@ def benchmark(B, M, N, K, provider):
elif provider == 'triton':
assert len(a.shape) == len(b.shape), 'Incompatible sizes'
if len(a.shape) == 3:
c = torch.empty((B, M, N), device='xpu', dtype=torch.float32)
c = torch.zeros((B, M, N), device='xpu', dtype=torch.float32)
else:
assert len(a.shape) == 2, 'Expecting shape of length 2'
c = torch.empty((M, N), device='xpu', dtype=torch.float32)
c = torch.zeros((M, N), device='xpu', dtype=torch.float32)
triton_fn = lambda: matmul(a, b, c, transpose_a=TRANSPOSE_A, transpose_b=TRANSPOSE_B)
torch_fn = lambda: torch.matmul(torch_a, torch_b).to(torch.float32)
rtol = 1e-2 if a.dtype == torch.bfloat16 else 1e-3
Expand All @@ -304,17 +305,17 @@ def benchmark(B, M, N, K, provider):
kernel_name='matmul_kernel_with_block_pointers')
elif provider == 'xetla':
if B == 1:
c = torch.empty((M, N), device='xpu', dtype=torch.float32)
acc = torch.empty((M, N), device='xpu', dtype=torch.float32)
cnt = torch.empty((M, N), device='xpu', dtype=torch.int32)
c = torch.zeros((M, N), device='xpu', dtype=torch.float32)
acc = torch.zeros((M, N), device='xpu', dtype=torch.float32)
cnt = torch.zeros((M, N), device='xpu', dtype=torch.int32)
else:
c = torch.empty((B, M, N), device='xpu', dtype=torch.float32)
acc = torch.empty((B, M, N), device='xpu', dtype=torch.float32)
cnt = torch.empty((B, M, N), device='xpu', dtype=torch.int32)
c = torch.zeros((B, M, N), device='xpu', dtype=torch.float32)
acc = torch.zeros((B, M, N), device='xpu', dtype=torch.float32)
cnt = torch.zeros((B, M, N), device='xpu', dtype=torch.int32)
name = f'gemm_shape_{B}_{M}_{K}_{N}'
# FIXME: Use gemm_streamk_benchmark.py when Triton streamk can get
# better performance.
if (B, M, N, K) == (1, 3072, 4096, 3072):
if (B, M, N, K) == (1, 3072, 3072, 4096):
name = 'gemm_streamk_shape_3072_4096_3072'
func = getattr(xetla_kernel, name)
xetla_fn = lambda: func(a, b, c, acc, cnt)
Expand Down