Skip to content

[DEBUG] Source kernel version for 09 tutorial from ARL-H machine #4570

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 7 commits into
base: main
Choose a base branch
from
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
54 changes: 54 additions & 0 deletions python/test/unit/intel/test_regressions.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,3 +53,57 @@ def test_regression_4441(device, tmp_path: pathlib.Path):
module, function, n_regs, n_spills, n_max_threads = driver.active.utils.load_binary(
kernel.name, kernel.kernel, kernel.metadata.shared, kernel.metadata.build_flags,
not kernel.metadata.generate_native_code, device)


def test_kernel_from_09_tutorial(device, tmp_path: pathlib.Path):
# although the kernel is taken from the arl-h machine, the problem with it is also reproduced on pvc
ir = """
#blocked = #ttg.blocked<{sizePerThread = [4, 4], threadsPerWarp = [1, 32], warpsPerCTA = [4, 1], order = [1, 0]}>
#blocked1 = #ttg.blocked<{sizePerThread = [8, 1], threadsPerWarp = [8, 4], warpsPerCTA = [1, 4], order = [0, 1]}>
#shared = #ttg.swizzled_shared<{vec = 1, perPhase = 1, maxPhase = 1, order = [1, 0]}>
#shared1 = #ttg.swizzled_shared<{vec = 1, perPhase = 1, maxPhase = 1, order = [0, 1]}>
#smem = #ttg.shared_memory
module attributes {"ttg.num-ctas" = 1 : i32, "ttg.num-warps" = 4 : i32, ttg.target = "xpu", "ttg.threads-per-warp" = 32 : i32, ttig.min_sg_size = 8 : i32, ttig.support_bf16_conversion, ttig.support_dpas, ttig.target_arch = "spir64"} {
tt.func public @matmul_kernel(%arg0: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %arg5: i32 {tt.divisibility = 16 : i32}) {
%cst = arith.constant dense<0.000000e+00> : tensor<128x128xf32, #blocked>
%cst_0 = arith.constant dense<0.000000e+00> : tensor<64x128xf32, #blocked1>
%18 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #ttg.slice<{dim = 0, parent = #blocked1}>>
%42 = tt.splat %arg0 : !tt.ptr<f32> -> tensor<128x64x!tt.ptr<f32>, #blocked1>
%44 = tt.make_range {end = 64 : i32, start = 0 : i32} : tensor<64xi32, #ttg.slice<{dim = 1, parent = #blocked1}>>
%45 = tt.expand_dims %44 {axis = 1 : i32} : tensor<64xi32, #ttg.slice<{dim = 1, parent = #blocked1}>> -> tensor<64x1xi32, #blocked1>
%46 = tt.expand_dims %18 {axis = 0 : i32} : tensor<128xi32, #ttg.slice<{dim = 0, parent = #blocked1}>> -> tensor<1x128xi32, #blocked1>
%50 = tt.broadcast %46 : tensor<1x128xi32, #blocked1> -> tensor<64x128xi32, #blocked1>
%52 = tt.splat %arg0 : !tt.ptr<f32> -> tensor<64x128x!tt.ptr<f32>, #blocked1>
%53 = tt.addptr %52, %50 : tensor<64x128x!tt.ptr<f32>, #blocked1>, tensor<64x128xi32, #blocked1>

%85 = tt.load %42: tensor<128x64x!tt.ptr<f32>, #blocked1>
%86 = tt.splat %arg5 : i32 -> tensor<64x1xi32, #blocked1>
%87 = arith.cmpi slt, %45, %86 : tensor<64x1xi32, #blocked1>
%88 = tt.broadcast %87 : tensor<64x1xi1, #blocked1> -> tensor<64x128xi1, #blocked1>
%89 = tt.load %53, %88, %cst_0 : tensor<64x128x!tt.ptr<f32>, #blocked1>
%91 = ttg.local_alloc %85 : (tensor<128x64xf32, #blocked1>) -> !ttg.memdesc<128x64xf32, #shared, #smem>
%92 = ttg.local_load %91 : !ttg.memdesc<128x64xf32, #shared, #smem> -> tensor<128x64xf32, #ttg.dot_op<{opIdx = 0, parent = #blocked}>>
%94 = ttg.local_alloc %89 : (tensor<64x128xf32, #blocked1>) -> !ttg.memdesc<64x128xf32, #shared1, #smem>
%cst_test2 = arith.constant dense<1.11111116> : tensor<64x128xf32, #ttg.dot_op<{opIdx = 1, parent = #blocked}>>
%96 = tt.dot %92, %cst_test2, %cst, inputPrecision = tf32 : tensor<128x64xf32, #ttg.dot_op<{opIdx = 0, parent = #blocked}>> * tensor<64x128xf32, #ttg.dot_op<{opIdx = 1, parent = #blocked}>> -> tensor<128x128xf32, #blocked>

%78 = ttg.convert_layout %96 : tensor<128x128xf32, #blocked> -> tensor<128x128xf32, #blocked1>
tt.return
}
}
"""

temp_file = tmp_path / "test_kernel_from_09_tutorial.ttgir"
temp_file.write_text(ir)
kernel = triton.compile(str(temp_file))

from triton.runtime.driver import driver
device = driver.active.get_current_device()

# try to catch:
# L0 build module failed. Log: IGC: Internal Compiler Error: Segmentation violation
# Error during Intel loadBinary: Triton Error [ZE]: 0x78000011
# RuntimeError: Triton Error [ZE]: 0x78000011
module, function, n_regs, n_spills, n_max_threads = driver.active.utils.load_binary(
kernel.name, kernel.kernel, kernel.metadata.shared, kernel.metadata.build_flags,
not kernel.metadata.generate_native_code, device)
Loading