Skip to content

add vectorization path on maxpool backward channel last #1907

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 7 commits into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
276 changes: 273 additions & 3 deletions src/ATen/native/xpu/sycl/DilatedMaxPool2d.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@

#include <ATen/native/xpu/sycl/Atomics.h>
#include <ATen/native/xpu/sycl/BatchKernel.h>
#include <ATen/native/xpu/sycl/MemoryAccess.h>
#include <ATen/native/xpu/sycl/NumericLimits.h>
#include <comm/Runtime.h>
#include <comm/SYCLHelpers.h>
Expand Down Expand Up @@ -251,13 +252,14 @@ struct MaxPool2dBackwardDeterministicKernelFunctor {
int pwstart =
p_start(inputW, pad_w_, kernel_w_, dilation_w_, stride_w_);
int pwend = p_end(inputW, pad_w_, gradOutputSizeW_, stride_w_);
scalar_t grad = 0;
if constexpr (is_channels_last) {
int offset = batch * out_n_stride_ + plane;
for (int ph = phstart; ph < phend; ++ph) {
for (int pw = pwstart; pw < pwend; ++pw) {
if (indices_[offset + (ph * gradOutputSizeW_ + pw) * numPlane_] ==
input_hw_index) {
gradInput_[inputIndex] += static_cast<scalar_t>(
grad += static_cast<scalar_t>(
gradOutput_
[offset + (ph * gradOutputSizeW_ + pw) * numPlane_]);
}
Expand All @@ -269,12 +271,13 @@ struct MaxPool2dBackwardDeterministicKernelFunctor {
for (int pw = pwstart; pw < pwend; ++pw) {
if (indices_[offset + ph * gradOutputSizeW_ + pw] ==
input_hw_index) {
gradInput_[inputIndex] += static_cast<scalar_t>(
grad += static_cast<scalar_t>(
gradOutput_[offset + ph * gradOutputSizeW_ + pw]);
}
}
}
}
gradInput_[inputIndex] = grad;
}
} while (cfg_.next(item, desc));
}
Expand Down Expand Up @@ -349,6 +352,116 @@ struct MaxPool2dBackwardDeterministicKernelFunctor {
BatchKernelConfig cfg_;
};

template <typename scalar_t, typename vec_t, int vec_size>
struct MaxPool2dBackwardChannelLastVec {
void operator()(sycl::nd_item<1> item) const {
for (auto inputIndex = item.get_global_linear_id();
inputIndex < gradInputSize_ / vec_size;
inputIndex += item.get_local_range(0) * item.get_group_range(0)) {
int batch = inputIndex / (in_n_stride_ / vec_size);
int plane;
int64_t input_hw_index;

plane = inputIndex % (numPlane_ / vec_size);

input_hw_index = ((inputIndex % (in_n_stride_ / vec_size)) - plane) /
(numPlane_ / vec_size);

int inputW = input_hw_index % gradInputSizeW_;
int inputH = input_hw_index / gradInputSizeW_;
int phstart = p_start(inputH, pad_h_, kernel_h_, dilation_h_, stride_h_);
int phend = p_end(inputH, pad_h_, gradOutputSizeH_, stride_h_);
int pwstart = p_start(inputW, pad_w_, kernel_w_, dilation_w_, stride_w_);
int pwend = p_end(inputW, pad_w_, gradOutputSizeW_, stride_w_);
vec_t grad_vec;
#pragma unroll
for (int i = 0; i < vec_size; i++) {
grad_vec[i] = 0;
}

int offset = batch * out_n_stride_ / vec_size + plane;
for (int ph = phstart; ph < phend; ++ph) {
for (int pw = pwstart; pw < pwend; ++pw) {
int load_offset = offset +
ph * gradOutputSizeW_ * numPlane_ / vec_size +
pw * numPlane_ / vec_size;
vec_t gout_val_vec = gradOutput_[load_offset];
#pragma unroll
for (int i = 0; i < vec_size; i++) {
if (indices_[load_offset * vec_size + i] == input_hw_index) {
grad_vec[i] = static_cast<scalar_t>(grad_vec[i]) +
static_cast<scalar_t>(gout_val_vec[i]);
Comment on lines +392 to +393
Copy link
Preview

Copilot AI Aug 5, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The cast static_cast<scalar_t>(grad_vec[i]) is redundant since grad_vec[i] is already of type scalar_t. This should be simplified to grad_vec[i] += static_cast<scalar_t>(gout_val_vec[i]);

Suggested change
grad_vec[i] = static_cast<scalar_t>(grad_vec[i]) +
static_cast<scalar_t>(gout_val_vec[i]);
grad_vec[i] += static_cast<scalar_t>(gout_val_vec[i]);

Copilot uses AI. Check for mistakes.

}
}
}
}

gradInput_[inputIndex] = grad_vec;
}
}
MaxPool2dBackwardChannelLastVec(
vec_t* gradInput,
const vec_t* gradOutput,
const int64_t* indices,
int numPlane,
int gradInputSizeH,
int gradInputSizeW,
int gradOutputSizeH,
int gradOutputSizeW,
int64_t gradInputSize,
int out_n_stride,
int in_n_stride,
int kernel_h,
int kernel_w,
int stride_h,
int stride_w,
int pad_h,
int pad_w,
int dilation_h,
int dilation_w)
: gradInput_(gradInput),
gradOutput_(gradOutput),
indices_(indices),
numPlane_(numPlane),
gradInputSizeH_(gradInputSizeH),
gradInputSizeW_(gradInputSizeW),
gradOutputSizeH_(gradOutputSizeH),
gradOutputSizeW_(gradOutputSizeW),
gradInputSize_(gradInputSize),
out_n_stride_(out_n_stride),
in_n_stride_(in_n_stride),
kernel_h_(kernel_h),
kernel_w_(kernel_w),
stride_h_(stride_h),
stride_w_(stride_w),
pad_h_(pad_h),
pad_w_(pad_w),
dilation_h_(dilation_h),
dilation_w_(dilation_w) {}

private:
vec_t* gradInput_;
const vec_t* gradOutput_;
const int64_t* indices_;
int numPlane_;
int gradInputSizeH_;
int gradInputSizeW_;
int gradOutputSizeH_;
int gradOutputSizeW_;
int64_t gradInputSize_;
int out_n_stride_;
int in_n_stride_;
int kernel_h_;
int kernel_w_;
int stride_h_;
int stride_w_;
int pad_h_;
int pad_w_;
int dilation_h_;
int dilation_w_;
};


template <typename scalar_t, bool is_channels_last>
void launch_max_pool2d_kernel(
scalar_t* output,
Expand Down Expand Up @@ -397,6 +510,58 @@ void launch_max_pool2d_kernel(
sycl_kernel_submit(cfg.global_size(), cfg.group_size(), queue, kfn);
}

#define LAUNCH_MAXPOOL_BACKWARD_CHANNEL_LAST_VEC( \
scalar_t, \
vec_size, \
num_wg, \
wg_size, \
queue, \
gradInput, \
gradOutput, \
indices, \
numPlane, \
gradInputSizeH, \
gradInputSizeW, \
gradOutputSizeH, \
gradOutputSizeW, \
gradInputSize, \
out_n_stride, \
in_n_stride, \
kernel_h, \
kernel_w, \
stride_h, \
stride_w, \
pad_h, \
pad_w, \
dilation_h, \
dilation_w) \
{ \
using vec_t = memory::aligned_vector<scalar_t, vec_size>; \
const vec_t* grad_output_vec = reinterpret_cast<const vec_t*>(gradOutput); \
vec_t* grad_input_vec = reinterpret_cast<vec_t*>(gradInput); \
auto kfn = MaxPool2dBackwardChannelLastVec<scalar_t, vec_t, vec_size>( \
grad_input_vec, \
grad_output_vec, \
indices, \
numPlane, \
gradInputSizeH, \
gradInputSizeW, \
gradOutputSizeH, \
gradOutputSizeW, \
gradInputSize, \
out_n_stride, \
in_n_stride, \
kernel_h, \
kernel_w, \
stride_h, \
stride_w, \
pad_h, \
pad_w, \
dilation_h, \
dilation_w); \
sycl_kernel_submit(num_wg* wg_size, wg_size, queue, kfn); \
}

template <typename scalar_t, bool is_channels_last>
void launch_max_pool2d_backward_kernel(
scalar_t* gradInput,
Expand Down Expand Up @@ -435,6 +600,112 @@ void launch_max_pool2d_backward_kernel(
// with CUDA in alexnet To avoid future problem, we decided to always use
// deterministic path.

int vec_size = 1;
int thread_slots = syclGpuEuCount() * syclGpuHWThreadsPerEU();
int num_sub_wg;
auto wg_size = syclDeviceMaxWorkGroupSize();
int64_t num_wg;
if constexpr (is_channels_last) {
for (vec_size = std::min(
8, memory::can_vectorize_up_to<scalar_t>((char*)gradOutput));
vec_size >= 1;
vec_size /= 2) {
if (numPlane % vec_size != 0) {
continue;
}
num_sub_wg = gradInputSize / vec_size / syclMaxSubGroupSize();
if (2 * num_sub_wg > thread_slots) {
int total_thread = gradInputSize / vec_size;
num_wg = (total_thread + wg_size - 1) / wg_size;
break;
}
}
switch (vec_size) {
case 8:
LAUNCH_MAXPOOL_BACKWARD_CHANNEL_LAST_VEC(
scalar_t,
8,
num_wg,
wg_size,
queue,
gradInput,
gradOutput,
indices,
numPlane,
gradInputSizeH,
gradInputSizeW,
gradOutputSizeH,
gradOutputSizeW,
gradInputSize,
out_n_stride,
in_n_stride,
kernel_h,
kernel_w,
stride_h,
stride_w,
pad_h,
pad_w,
dilation_h,
dilation_w);
return;
case 4:
LAUNCH_MAXPOOL_BACKWARD_CHANNEL_LAST_VEC(
scalar_t,
4,
num_wg,
wg_size,
queue,
gradInput,
gradOutput,
indices,
numPlane,
gradInputSizeH,
gradInputSizeW,
gradOutputSizeH,
gradOutputSizeW,
gradInputSize,
out_n_stride,
in_n_stride,
kernel_h,
kernel_w,
stride_h,
stride_w,
pad_h,
pad_w,
dilation_h,
dilation_w);
return;
case 2:
LAUNCH_MAXPOOL_BACKWARD_CHANNEL_LAST_VEC(
scalar_t,
2,
num_wg,
wg_size,
queue,
gradInput,
gradOutput,
indices,
numPlane,
gradInputSizeH,
gradInputSizeW,
gradOutputSizeH,
gradOutputSizeW,
gradInputSize,
out_n_stride,
in_n_stride,
kernel_h,
kernel_w,
stride_h,
stride_w,
pad_h,
pad_w,
dilation_h,
dilation_w);
return;
default:
break;
};
}
using KernelClass =
MaxPool2dBackwardDeterministicKernelFunctor<scalar_t, is_channels_last>;
BatchKernelConfig cfg = BatchKernelConfig::make_config<KernelClass>(
Expand Down Expand Up @@ -647,7 +918,6 @@ void max_pool2d_with_indices_backward_kernel(
inputHeight, kH, padH, dH, dilationH, ceil_mode);
int64_t outputWidth = pooling_output_shape<int64_t>(
inputWidth, kW, padW, dW, dilationW, ceil_mode);

AT_DISPATCH_FLOATING_TYPES_AND2(
at::ScalarType::Half,
at::ScalarType::BFloat16,
Expand Down