Official implementation of PSE with its core PSRN (Parallel Symbolic Regression Network) module
Authors: Kai Ruan, Yilong Xu, Ze-Feng Gao, Yike Guo, Hao Sun, Ji-Rong Wen, Yang Liu
This repository contains the official PyTorch implementation of PSE (Parallel Symbolic Enumeration): A fast and efficient symbolic expression discovery method powered by PSRN (Parallel Symbolic Regression Network). PSRN evaluates millions of symbolic expressions simultaneously on GPU with automated subtree reuse.
Prerequisite: Python >=3.9, <=3.12
pip install psrnOr build from source (https://github.com/x66ccff/PSRN):
pip install git+https://github.com/x66ccff/PSRNNow, you can use psrn-run with custom data, use the following arguments:
-q, --csvpath TEXT path to custom csv file
-l, --operators operator library (e.g., "['Add','Mul','Identity','Tanh','Abs']")
--n_symbol_layers number of symbol layers (default=3)
-i, --n_inputs INTEGER PSRN input size (n variables + n constants)
-c, --use_constant BOOLEAN use const in PSE
--use_cpu BOOLEAN use cpu
-g, --gpu_index INTEGER gpu index used
--time_limit INTEGER time limit (s)
-d, --n_down_sample INTEGER n sample to downsample in PSRN for speeding up
-s, --seed INTEGER seed
-k, --topk INTEGER number of best expressions to take from PSRN to
fit
-o, --probe TEXT expression probe, string, PSE will stop if
probe is in pf
--experiment_name TEXT experiment_name
--help Show this message and exit.Examples
========
>>> # input data
>>> # ____^______
>>> # / |
>>> # ['x', 'y', 'x+x', '1.5', '3']
>>> # <-n_variables->
>>> # <-n_cross->
>>> # <-trying_const_num->
>>> # <-----------------n_inputs--------------------->
For more detailed parameter settings, please use psrn-run --help
Tip
- The last column of the csv should be the target variable
- If using a version of PyTorch below 2.0, an error may occur during the
torch.topkoperation. - The experiments were performed on servers with Nvidia A100 (80GB) and Intel(R) Xeon(R) Platinum 8380 CPUs @ 2.30GHz.
- We recommend using a high-memory GPU as smaller cards may encounter CUDA memory errors under our experimental settings. If you experience memory issues, consider reducing the number of input slots or opting for
semi_kozaoperator sets (e.g., replacing"Sub"and"Div"with"SemiSub"and"SemiDiv") orbasicoperator sets (e.g., replacing"Sub"and"Div"with"Neg"and"Inv").
To run the script with build-in custom data with an expression probe (the algorithm will stop when it finds the expression or its symbolic equivalents):
psrn-run --csvpath ./your_data.csv -g 0 -i 5 -c False --probe "(exp(x)-exp(-x))/2"Without an expression probe:
psrn-run --csvpath ./your_data.csv -g 0 -i 5 -c FalseFor limited VRAM (or when the ground truth expression is expected to be simple):
psrn-run --csvpath ./your_data.csv -g 0 -i 3 -c False --probe "(exp(x)-exp(-x))/2"To customize the operator library:
psrn-run --csvpath ./your_data.csv -g 0 -i 5 -c False --probe "(exp(x)-exp(-x))/2" -l "['Add','Mul','Identity','Tanh','Abs']"For custom data paths and operators:
psrn-run --csvpath ./your_data.csv -g 0 -i 5 -c False -l "['Add','Mul','SemiSub','SemiDiv','Identity']" You can also reduce the number of layers to save VRAM (default is 3) so that you can use more inputs (e.g. 70 input PSRN, the rest 20 will be cross subtrees)
psrn-run --csvpath ./50_cols_of_x_data.csv --n_symbol_layers 2 -g 0 -i 70 -c False -l "['Add','Mul','SemiSub','SemiDiv','Identity']" If you want to change the source code, please use the following steps:
clone the repo first
git clone https://github.com/x66ccff/PSRNthen install the repo with edit mode
cd PSRN
pip install -e .The cli.py is the entrance of the code, and you can change the PSRN_Regressior in regressor.py
Show Code
import os
import click
import time
import numpy as np
import sympy as sp
import pandas as pd
default_csv = os.path.join(os.path.dirname(__file__), 'data', 'custom_data.csv')
@click.command()
@click.option("--experiment_name", default="_", type=str, help="experiment_name")
@click.option("--gpu_index", "-g", default=0, type=int, help="gpu index used")
@click.option("--operators","-l",default="['Add','Mul','Sub','Div','Identity','Sin','Cos','Exp','Log']",help="operator library")
@click.option("--n_symbol_layers",default=3,type=int,help="number of symbol layers (default=3)")
@click.option("--n_down_sample","-d",default=100,type=int,help="n sample to downsample in PSRN for speeding up")
@click.option("--n_inputs","-i",default=5,type=int,help="PSRN input size (n variables + n constants)")
@click.option("--seed", "-s", default=0, type=int, help="seed")
@click.option("--topk","-k",default=10,type=int,help="number of best expressions to take from PSRN to fit")
@click.option("--use_constant", "-c", default=False, type=bool, help="use const in PSE")
@click.option("--probe","-o",default=None,type=str,help="expression probe, string, PSE will stop if probe is in pf")
@click.option("--csvpath","-q",default=default_csv,type=str,help="path to custom csv file")
@click.option("--use_cpu",default=False,type=bool,help="use cpu")
@click.option("--time_limit", default=3600, type=int, help="time limit (s)")
def main(experiment_name, gpu_index, operators, n_down_sample, n_inputs, seed, topk, use_constant, probe, csvpath, use_cpu, time_limit):
if not use_cpu:
os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_index)
import torch
from psrn import PSRN_Regressor
if not use_cpu:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
else:
device = torch.device("cpu")
operators = eval(operators)
df = pd.read_csv(csvpath, header=None)
Input = df.values[:, :-1].reshape(len(df), -1)
Output = df.values[:, -1].reshape(len(df), 1)
variables_name = [f"x{i}" for i in range(Input.shape[1])]
regressor = PSRN_Regressor(
variables=variables_name,
use_const=use_constant,
n_symbol_layers=n_symbol_layers,
device=device,
token_generator_config={
"base": {
"has_const": use_constant,
"tokens": operators
}
},
stage_config={
"default": {
"operators": operators,
"time_limit": time_limit,
"n_psrn_inputs": n_inputs,
"n_sample_variables": 3,
},
"stages": [
{},
],
},
)
start = time.time()
flag, pareto_ls = regressor.fit(
Input,
Output,
n_down_sample=n_down_sample,
use_threshold=False,
threshold=1e-20,
probe=probe,
prun_const=True,
prun_ndigit=6,
top_k=topk,
)
end = time.time()
time_cost = end - start
pareto_ls = regressor.display_expr_table(sort_by='mse') # or 'reward'
expr_str, reward, loss, complexity = pareto_ls[0]
print('Found:', expr_str, 'time_cost', time_cost)If you use this work, please cite:
@article{ruan2025discovering,
author = {Ruan, Kai and Xu, Yilong and Gao, Ze-Feng and Liu, Yang and Guo, Yike and Wen, Ji-Rong and Sun, Hao},
title = {Discovering physical laws with parallel symbolic enumeration},
journal = {Nature Computational Science},
year = {2025},
doi = {10.1038/s43588-025-00904-8},
url = {https://www.nature.com/articles/s43588-025-00904-8}
}