This repository is here to guide you through the GitHub tutorial that goes hand-in-hand with a video available on YouTube and a detailed blog post on my website. Together, these resources are designed to give you a complete understanding of the topic.
Here are the links to the related assets:
- YouTube Video: How to collect logs in k8s with Loki and Promtail
- Blog Post: How to collect logs in Kubernetes with Loki and Promtail
Feel free to explore the materials, star the repository, and follow along at your own pace.
This repository showcases the usage of Loki by using GKE with the HipsterShop
The following tools need to be installed on your machine :
- jq
- kubectl
- git
- gcloud (if you're using GKE)
- Helm
PROJECT_ID="<your-project-id>"
gcloud services enable container.googleapis.com --project ${PROJECT_ID}
gcloud services enable monitoring.googleapis.com \
cloudtrace.googleapis.com \
clouddebugger.googleapis.com \
cloudprofiler.googleapis.com \
--project ${PROJECT_ID}
ZONE=us-central1-b
gcloud containr clusters create isitobservable \
--project=${PROJECT_ID} --zone=${ZONE} \
--machine-type=e2-standard-2 --num-nodes=4
git clone https://github.com/isItObservable/Episode2--Kubernetes-Loki
cd Episode2--Kubernetes-Loki
cd hipstershop
./setup.sh
Prometheus (as done in Episode 1 )
helm install prometheus stable/prometheus-operator
kubectl get svc
kubectl edit svc prometheus-grafana
change to type NodePort
apiVersion: v1
kind: Service
metadata:
annotations:
meta.helm.sh/release-name: prometheus
meta.helm.sh/release-namespace: default
labels:
app.kubernetes.io/instance: prometheus
app.kubernetes.io/managed-by: Helm
app.kubernetes.io/name: grafana
app.kubernetes.io/version: 7.0.3
helm.sh/chart: grafana-5.3.0
name: prometheus-grafana
namespace: default
resourceVersion: "89873265"
selfLink: /api/v1/namespaces/default/services/prometheus-grafana
spec:
clusterIP: IPADRESSS
externalTrafficPolicy: Cluster
ports:
- name: service
nodePort: 30806
port: 80
protocol: TCP
targetPort: 3000
selector:
app.kubernetes.io/instance: prometheus
app.kubernetes.io/name: grafana
sessionAffinity: None
type: NodePort
status:
loadBalancer: {}
Deploy the ingress by making sure to replace the service name of your Grafana
cd ..\grafana
kubectl apply -f ingress.yaml
Get the login user and password of Grafana
- For the password :
kubectl get secret --namespace default prometheus-grafana -o jsonpath="{.data.admin-password}" | base64 --decode
- For the login user:
kubectl get secret --namespace default prometheus-grafana -o jsonpath="{.data.admin-user}" | base64 --decode
Get the IP address of your Grafana
kubectl get ingress grafana-ingress -ojson | jq '.status.loadBalancer.ingress[].ip'
helm repo add loki https://grafana.github.io/loki/charts
helm repo update
helm upgrade --install loki loki/loki-stack
In order to build a dashboard with data stored in Loki, we first need to add a new DataSource. In Grafana, go to Configuration/Add data source.
Select the source Loki, and configure the URL to interact with it.Remember, Grafana is hosted in the same namespace as Loki. So you can simply refer to the Loki service :
In Grafana, select Explore on the main menu Select the datasource Loki. In the drop-down menu, select the label produc -> hipster-shop
Loki has a specific query language that allows you to filter, transform the data, and even plot a metric from your logs in a graph. Similar to Prometheus, you need to :
- filter using labels : {app="frontend",product="hipster-shop" ,stream="stdout"} We're here only looking at the logs from hipster-shop, app frontend, and on the logs pushed in stdout.
- transform using | for example :
{job="fluent-bit",namespace="hipster-shop",stream="stdout"} | json | http_resp_took_ms >10
The first |
specifies to Grafana to use the JSON parser that will extract all the JSON properties as labels.
The second |
will filter the logs on the new labels created by the JSON parser.
In this example, we want to only get the logs where the attribute http.resp.took.ms is above 10ms ( the JSON parser is replaced by _)
We can then extract on field to plot it using all the various functions available in Grafana
If I want to plot the response time over time, i could use the function :
avg(avg_over_time({job="fluent-bit",namespace="hipster-shop",stream="stdout"} | json | http_resp_took_ms >10 | __error__ != "JSONParserErr"|unwrap http_resp_took_ms [30s])) by (pod)