@@ -60,7 +60,7 @@ record IsInjection (to : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
60
60
open IsCongruent isCongruent public
61
61
62
62
63
- record IsSurjection (f : A → B ) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
63
+ record IsSurjection (f : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
64
64
field
65
65
isCongruent : IsCongruent f
66
66
surjective : Surjective _≈₁_ _≈₂_ f
@@ -75,7 +75,7 @@ record IsSurjection (f : A → B ) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
75
75
strictlySurjective = S.strictlySurjective Eq₁.refl
76
76
77
77
strictlyInverseˡ : StrictlyInverseˡ _≈₂_ f section
78
- strictlyInverseˡ _ = S. inverseˡ Eq₁.refl
78
+ strictlyInverseˡ _ = inverseˡ Eq₁.refl
79
79
80
80
81
81
record IsBijection (f : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
@@ -120,7 +120,7 @@ record IsLeftInverse (to : A → B) (from : B → A) : Set (a ⊔ b ⊔ ℓ₁
120
120
renaming (cong to to-cong)
121
121
122
122
strictlyInverseˡ : StrictlyInverseˡ _≈₂_ to from
123
- strictlyInverseˡ = inverseˡ⇒strictlyInverseˡ _≈₁_ _≈₂_ Eq₁.refl inverseˡ
123
+ strictlyInverseˡ _ = inverseˡ Eq₁.refl
124
124
125
125
isSurjection : IsSurjection to
126
126
isSurjection = record
@@ -139,10 +139,10 @@ record IsRightInverse (to : A → B) (from : B → A) : Set (a ⊔ b ⊔ ℓ₁
139
139
renaming (cong to to-cong)
140
140
141
141
strictlyInverseʳ : StrictlyInverseʳ _≈₁_ to from
142
- strictlyInverseʳ = inverseʳ⇒strictlyInverseʳ _≈₁_ _≈₂_ Eq₂.refl inverseʳ
142
+ strictlyInverseʳ _ = inverseʳ Eq₂.refl
143
143
144
144
injective : Injective _≈₁_ _≈₂_ to
145
- injective = inverseʳ⇒injective {f⁻¹ = from} _≈₂_ to Eq₂.refl Eq₁.sym Eq₁.trans inverseʳ
145
+ injective = inverseʳ⇒injective _≈₂_ to Eq₂.refl Eq₁.sym Eq₁.trans inverseʳ
146
146
147
147
isInjection : IsInjection to
148
148
isInjection = record
0 commit comments