Skip to content

Conversation

@jan-service-account
Copy link

Updates dev branch with latest release (b4927) from ggml-org/llama.cpp

ckastner and others added 30 commits March 17, 2025 11:05
* cmake: Factor out compiler flag function from ggml

llama.cpps's build requires it, too, and we may want to make use of it
without add_subdirectory(ggml).

* cmake: Enable building against system ggml

This facilitates package maintenance for Linux distributions, where the
libggml library most likely will be shipped as an individual package
upon which a llama.cpp package depends.
…s checking (ggml-org#12273)

* vulkan: Pad N dimension of B matrix for coopmat2 perf, to avoid bounds checking
* vulkan: subgroup size test

* Vulkan: Add device architecture enum and logic to recognize AMD generations

* vulkan: use new architecture logic to specify subgroup size

* Initial vulkan subgroup size tuning for RDNA3

* vulkan: commonize RDNA subgroup tuning

* vulkan: override subgroup size if required_subgroup_size = 0

* vulkan: disable warp 32 for RDNA3

* vulkan: fine tuned RDNA1 subgroup sizes

* vulkan: adjusted subgroup size map

* vulkan: fixed RDNA2 subgroup map

---------

Co-authored-by: 0cc4m <[email protected]>
It's already found by FindVulkan.cmake in the parent CMakeLists
* Enable CUDA Graph on CTK < 12.x

`cudaGraphExecUpdate` API was changed on 12.x. For this reason CUDA graph support was disabled on older CUDA toolkit. This change enables CUDA support in CTK version < 12.x by using older API if CTK < 12.x.

* Fix compilation errors with MUSA

* Disable CUDA Graph for MUSA
* ggml: Add op l2_norm

Signed-off-by: Molly Sophia <[email protected]>

* ggml: Add op rwkv_wkv7

Signed-off-by: Molly Sophia <[email protected]>

* llama: Add support for RWKV7 and ARWKV7 models

Signed-off-by: Molly Sophia <[email protected]>

* llama: fix inference with RWKV6Qwen2

Signed-off-by: Molly Sophia <[email protected]>

* llama: add more (a)rwkv7 variants in size

Signed-off-by: Molly Sophia <[email protected]>

* Apply code-format changes

Signed-off-by: Molly Sophia <[email protected]>

* fix MUSA build

Signed-off-by: Molly Sophia <[email protected]>

* llama: fix shape error with rwkv using llama-parallel

Signed-off-by: Molly Sophia <[email protected]>

---------

Signed-off-by: Molly Sophia <[email protected]>
…e option (ggml-org#12371)

* alberto changes

* enable sycl graphs by env variable

* fixed compilation warnings in ggml-sycl.cpp

* renamed graph variables

* fix markdown in docs/backend/SYCL.md

Co-authored-by: Romain Biessy <[email protected]>

* fix markdown in docs/backend/SYCL.md again

* compiling graphs by default, renamed graph_enable to graph_disable

---------

Co-authored-by: Romain Biessy <[email protected]>
…g#12447)

* context : always use non-causal attention for encoder graphs

ggml-ci

* context : move the change to llama_context::encode()

ggml-ci
* graph : normalize Q, K, V shapes and add comments

ggml-ci

* context : synchronize before getting cross attention data

* model : fix command-r attention norm check
* opencl: more profiling timing

* opencl: generate trace for profiling

* opencl: reduce profiling overhead

* Populate profiling timing info at the end rather than after each
  kernel run

* opencl: fix for chrome tracing
)

I've been seeing significantly worse performance for tg with flash attention
enabled vs disabled, and it seems to be related to the submit heuristic.
Change the heuristic to check how many bytes worth of weight matrix are
used and flush every 100MB, and ramp up after the first few submits.
This seems to resolve the issue, and also increases perf for non-FA a bit.
ggml-org#12456)

* Add support for GPT2, Bloom and CodeShell tied word embeddings

* Deduplicate tied word embeddings weights

* Workaround for incorrect weight map

It appears transformer.wte.weight is in the weight map even though the weights are not there, remove it if output weights are encountered first.

* check++

* fatfingers--
* ci: add visionOS build workflow

Add a new GitHub Actions workflow for building on visionOS with CMake and Xcode.

* ggml: Define _DARWIN_C_SOURCE for visionOS to fix missing u_xxx typedefs

* ci: remove define hacks for u_xxx system types

---------

Co-authored-by: Giovanni Petrantoni <[email protected]>
…-org#12183)

- Find out active blocks per SM using cudaOccupancyMaxActiveBlocksPerMultiprocessor API. Use this value to determine the optimal parallel_blocks value.
- Prefer vector flash attention kernels over MMA kernel for BS=1

Fixes Issue: ggml-org#12182
---------

Co-authored-by: Johannes Gäßler <[email protected]>
@Minh141120 Minh141120 closed this Mar 20, 2025
@Minh141120 Minh141120 deleted the update-dev-from-master-2025-03-20-00-07 branch March 20, 2025 08:06
jan-service-account pushed a commit that referenced this pull request Aug 6, 2025
* oai moe

* compat with new checkpoint

* add attn sink impl

* add rope scaling yarn

* logits match with latest transformers code

* wip chat template

* rm trailing space

* use ggml_scale_bias

* rm redundant is_swa_all

* convert interleaved gate_up

* graph : fix activation function to match reference (#7)

* vocab : handle o200k_harmony special tokens

* ggml : add attention sinks support (#1)

* llama : add attn sinks

* ggml : add attn sinks

* cuda : add attn sinks

* vulkan : add support for sinks in softmax

remove unnecessary return

* ggml : add fused swiglu_oai op (#11)

* ggml : add fused swiglu_oai op

* Update ggml/src/ggml-cpu/ops.cpp

Co-authored-by: Georgi Gerganov <[email protected]>

* update CUDA impl

* cont : metal impl

* add vulkan impl

* test-backend-ops : more test cases, clean up

* llama : remove unfused impl

* remove extra lines

---------

Co-authored-by: Georgi Gerganov <[email protected]>

---------

Co-authored-by: slaren <[email protected]>

* repack mxfp4 upon conversion

* clean up a bit

* enable thinking

* add quick hack to render only some special tokens

* fix bf16 conversion

* remove vocab hack

* webui ok

* support chat parsing for gpt-oss

* fix webui

* direct mapping mxfp4, FINALLY

* force using mxfp4

* properly use lazy tensor

* ggml : add mxfp4

ggml : use e8m0 conversion instead of powf

Co-authored-by: Diego Devesa <[email protected]>

change kvalues_mxfp4 table to match e2m1 (#6)

metal : remove quantization for now (not used)

cuda : fix disabled CUDA graphs due to ffn moe bias

vulkan : add support for mxfp4

cont : add cm2 dequant

* ggml : add ggml_add_id (#13)

* ggml : add ggml_add_id

* add cuda impl

* llama : add weight support check for add_id

* perf opt

* add vulkan impl

* rename cuda files

* add metal impl

* allow in-place ggml_add_id

* llama : keep biases on CPU with --cpu-moe

* llama : fix compile error

ggml-ci

* cuda : add fallback for __nv_cvt_e8m0_to_bf16raw

ggml-ci

* cleanup

ggml-ci

* sycl : fix supports_op for MXFP4

ggml-ci

* fix Unknown reasoning format

* ggml-cpu : fix AVX build

ggml-ci

* fix hip build

ggml-ci

* cuda : add mxfp4 dequantization support for cuBLAS

ggml-ci

* ggml-cpu : fix mxfp4 fallback definitions for some architectures

ggml-ci

* cuda : fix version required for __nv_cvt_e8m0_to_bf16raw

---------

Co-authored-by: Xuan Son Nguyen <[email protected]>
Co-authored-by: slaren <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Projects

None yet

Development

Successfully merging this pull request may close these issues.