Skip to content

Conversation

@jan-service-account
Copy link

Updates dev branch with latest release (b6152) from ggml-org/llama.cpp

Tak-RS and others added 12 commits August 13, 2025 08:54
…over RPC (macOS & others) (ggml-org#15188)

* ggml-rpc: chunk send()/recv() to avoid EINVAL for very large tensors over RPC (macOS & others). Fixes ggml-org#15055

* ggml-rpc: rename RPC_IO_CHUNK->MAX_CHUNK_SIZE, use std::min() for cap, switch to GGML_LOG_ERROR, handle 0-length send/recv

* rpc: drop n==0 special case in send_data(); retry in loop per review

* rpc: remove trailing whitespace in send_data()

---------

Co-authored-by: Shinnosuke Takagi <[email protected]>
…vement on kernel-level and 10% perf increase for Gemma3n (ggml-org#15132)

* Factor out `reduce_rows_f32` from common.cuh

This increases iteration cycle speed by not having to recompile
every kernel all the time

* Hide memory-latency by loop unrolling in reduce_rows_f32

* Further optimizations to `reduce_rows_f32`

1. Increase threadblock size to better hide latency of memory requests.
   As a consequence of bigger threadblocks, do 2-step summation, using
   shared memory to communicate results between invocations
2. Use sum_temp array to reduce waits on sum
3. Adjust num_unroll to reflext bigger threadblock
4. Improve default block_dims, increase support for more block_dims

* Add perf tests for `reduce_rows_f32` kernel

* Add heuristic to toggle 128/512 threads based on sm count

Break even point was the minimum of the following multiples.

| GPU Model                     | Nrow SM Count Multiple |
| -----------                   | -----------            |
| RTX 4000 SFF ADA              | 2.0x                   |
| RTX 6000 ADA                  | 2.5x                   |
| RTX PRO 6000 Blackwell Max-Q  | 3.04x                  |
| RTX PRO 4500 Blackwell	| 3.15x                  |

* Ensure perf gains also for small ncols and large nrows

Alternative to this, one could have also made the number of unrollings
template-able, but that would require compiling the kernel multiple
times, increasing binary size unnecessarily

* Modify perf and unit-tests

* Apply auto-formatting by clang

* Fix CI build failure

See https://github.com/ggml-org/llama.cpp/actions/runs/16798370266/job/47573716079?pr=15132#step:7:486
Building with VS generator worked though.

* Remove sm_count property from `ggml_backend_cuda_context`

Requested by @JohannesGaessler, and should fix remaining CI issues as a
side-effect

* Add CUB-based implementation for GGML_OP_MEAN

Currently this branch is only executed for nrows==1

* Add heuristics to execute CUB branch only when it brings perf

Heuristics were determined on the following HW:

* RTX 4000 SFF ADA
* RTX 6000 ADA
* RTX PRO 6000 Blackwell Max-Q
* RTX PRO 4500 Blackwell

* Add unit-test for CUB-based mean

Tests should run with CUDA Graphs enabled per default on NVGPUs

* Rename `USE_CUB` to `GGML_CUDA_USE_CUB`

Suggested by @JohannesGaessler

* Unindent Preprocessor directives

See
ggml-org#15132 (comment)
)

* ci : add flake8 and pyright to copilot-setup-steps.yml

* add tools/server/tests/requirements.txt
* Changed the CI file to hw

* Changed the CI file to hw

* Added to sudoers for apt

* Removed the clone command and used checkout

* Added libcurl

* Added gcc-14

* Checking gcc --version

* added gcc-14 symlink

* added CC and C++ variables

* Added the gguf weight

* Changed the weights path

* Added system specification

* Removed white spaces

* ci: Replace Jenkins riscv native build Cloud-V pipeline with GitHub Actions workflow

Removed the legacy .devops/cloud-v-pipeline Jenkins CI configuration and introduced .github/workflows/build-riscv-native.yml for native RISC-V builds using GitHub Actions.

* removed trailing whitespaces

---------

Co-authored-by: Akif Ejaz <[email protected]>
…e-draft parameters (ggml-org#15191)

* Checkpoint from VS Code for coding agent session

* Initial plan

* Fix typo in --override-tensor-draft flag implementation

* Add null termination for speculative tensor buffer overrides

* Apply suggestions from code review

* Apply suggestions from code review

* Extract tensor override parsing logic to common function (addresses @slaren's feedback)

* Apply suggestions from code review

* Apply suggestions

---------

Co-authored-by: Sigbjørn Skjæret <[email protected]>
Co-authored-by: Georgi Gerganov <[email protected]>
Co-authored-by: Diego Devesa <[email protected]>
* update `rope_multi`:

1. add `ggml_rope_multi_inplace`;
1. use `GGML_MROPE_SECTIONS` instead of 4.

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <[email protected]>

---------

Co-authored-by: Georgi Gerganov <[email protected]>
…ggml-org#15295)

The flake.nix included references to llama-cpp.cachix.org cache with a comment
claiming it's 'Populated by the CI in ggml-org/llama.cpp', but:

1. No visible CI workflow populates this cache
2. The cache is empty for recent builds (tested b6150, etc.)
3. This misleads users into expecting pre-built binaries that don't exist

This change removes the non-functional cache references entirely, leaving only
the working cuda-maintainers cache that actually provides CUDA dependencies.

Users can still manually add the llama-cpp cache if it becomes functional in the future.
@jan-service-account jan-service-account merged commit 29c8fbe into dev Aug 15, 2025
10 of 11 checks passed
@jan-service-account jan-service-account deleted the update-dev-from-master-2025-08-14-00-12 branch August 15, 2025 00:28
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.