Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion common/arg.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1979,7 +1979,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
add_opt(common_arg(
{"--host"}, "HOST",
string_format("ip address to listen (default: %s)", params.hostname.c_str()),
string_format("ip address to listen, or bind to an UNIX socket if the address ends with .sock (default: %s)", params.hostname.c_str()),
[](common_params & params, const std::string & value) {
params.hostname = value;
}
Expand Down
25 changes: 24 additions & 1 deletion convert_hf_to_gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -2269,7 +2269,7 @@ def set_gguf_parameters(self):
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])


@Model.register("Qwen2VLForConditionalGeneration")
@Model.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
class Qwen2VLModel(Model):
model_arch = gguf.MODEL_ARCH.QWEN2VL

Expand Down Expand Up @@ -4419,6 +4419,29 @@ def prepare_tensors(self):
raise ValueError(f"Unprocessed experts: {experts}")


@Model.register("PLMForCausalLM")
class PLMModel(Model):
model_arch = gguf.MODEL_ARCH.PLM

def set_vocab(self):
self._set_vocab_gpt2()

def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
self.gguf_writer.add_value_length(hparams["v_head_dim"])
self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])

def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
return [(self.map_tensor_name(name), data_torch)]

def prepare_tensors(self):
super().prepare_tensors()


@Model.register("T5WithLMHeadModel")
@Model.register("T5ForConditionalGeneration")
@Model.register("MT5ForConditionalGeneration")
Expand Down
Loading