Skip to content

Add draft notebook #1

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 6 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
388 changes: 388 additions & 0 deletions identify_linear_expression.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,388 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "BK5As0cbUejz",
"jupyter": {
"is_executing": true
}
},
"outputs": [],
"source": [
"import random\n",
"\n",
"from etuples import etuple\n",
"from unification import unify, var\n",
"\n",
"import pytensor.tensor as pt\n",
"from pytensor.graph import rewrite_graph\n",
"from pytensor.graph.fg import FunctionGraph\n",
"from pytensor.graph.rewriting.basic import MergeOptimizer, PatternNodeRewriter, out2in"
]
},
{
"cell_type": "code",
"execution_count": 87,
"metadata": {
"ExecuteTime": {
"end_time": "2025-08-14T11:32:09.438328768Z",
"start_time": "2025-08-14T11:29:54.500174Z"
},
"id": "alNycwOIUzTM"
},
"outputs": [],
"source": [
"def find_optimal_P(P, Q, mc):\n",
" pi = (Q * (P - mc)).sum()\n",
" dpi_dP = pt.grad(pi, P)\n",
" # P_star, success = root(dpi_dP, P, method=\"hybr\", optimizer_kwargs=dict(tol=1e-8))\n",
" # return P_star, success\n",
" return dpi_dP"
]
},
{
"cell_type": "code",
"execution_count": 97,
"metadata": {
"ExecuteTime": {
"end_time": "2025-08-14T11:32:09.440094174Z",
"start_time": "2025-08-14T11:31:54.469010Z"
},
"id": "wVnYGz8GVKb4"
},
"outputs": [],
"source": [
"price_effect = pt.scalar(\"price_effect\")\n",
"price = pt.vector(\"price\")\n",
"trend = pt.vector(\"trend\")\n",
"seasonality = pt.vector(\"seasonality\")\n",
"mc = pt.scalar(\"marginal_cost\")\n",
"\n",
"price_term = price * price_effect\n",
"expected_sales = trend + price_term + seasonality"
]
},
{
"cell_type": "code",
"execution_count": 98,
"metadata": {
"ExecuteTime": {
"end_time": "2025-08-14T11:32:09.440827348Z",
"start_time": "2025-08-14T11:31:54.681476Z"
},
"id": "BeitshYMVkQU"
},
"outputs": [],
"source": [
"expr = find_optimal_P(price, expected_sales, mc=mc)"
]
},
{
"cell_type": "code",
"execution_count": 99,
"metadata": {
"ExecuteTime": {
"end_time": "2025-08-14T11:32:09.443902007Z",
"start_time": "2025-08-14T11:31:54.918556Z"
},
"id": "jugOxL4DcRFN"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Add [id A] 5\n",
" ├─ Mul [id B] 4\n",
" │ ├─ Sub [id C] 3\n",
" │ │ ├─ price [id D]\n",
" │ │ └─ ExpandDims{axis=0} [id E] 2\n",
" │ │ └─ marginal_cost [id F]\n",
" │ └─ ExpandDims{axis=0} [id G] 0\n",
" │ └─ price_effect [id H]\n",
" ├─ trend [id I]\n",
" ├─ Mul [id J] 1\n",
" │ ├─ price [id D]\n",
" │ └─ ExpandDims{axis=0} [id G] 0\n",
" │ └─ ···\n",
" └─ seasonality [id K]\n"
]
},
{
"data": {
"text/plain": [
"<ipykernel.iostream.OutStream at 0x7fcbccd613c0>"
]
},
"execution_count": 99,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Use existing rewrites to simplify expression\n",
"fgraph = FunctionGraph(outputs=[expr], clone=False)\n",
"rewrite_graph(fgraph, include=(\"canonicalize\",))\n",
"fgraph.dprint()"
]
},
{
"cell_type": "code",
"execution_count": 100,
"metadata": {
"ExecuteTime": {
"end_time": "2025-08-14T11:32:09.445406846Z",
"start_time": "2025-08-14T11:31:55.243098Z"
},
"id": "86-KeCOFWQZU"
},
"outputs": [],
"source": [
"# distribute_mul_over_add = PatternNodeRewriter(\n",
"# (pt.mul, (pt.add, \"x\", \"y\"), \"z\"),\n",
"# (pt.add, (pt.mul, \"x\", \"z\"), (pt.mul, \"y\", \"z\")),\n",
"# )\n",
"\n",
"distribute_mul_over_sub = PatternNodeRewriter(\n",
" (pt.mul, (pt.sub, \"x\", \"y\"), \"z\"),\n",
" (pt.add, (pt.mul, \"x\", \"z\"), (pt.mul, (pt.neg, \"y\"), \"z\")),\n",
")\n",
"\n",
"combine_addition_terms = PatternNodeRewriter(\n",
" (pt.add, (pt.add, \"x\", \"y\"), \"z\", \"x\", \"w\"),\n",
" (pt.add, (pt.mul, \"x\", 2), (pt.add, \"y\", \"z\", \"w\")),\n",
")\n",
"\n",
"# distribute_mul_over_add = out2in(distribute_mul_over_add, name=\"distribute_mul_add\")\n",
"distribute_mul_over_sub = out2in(distribute_mul_over_sub, name=\"distribute_mul_sub\")\n",
"combine_addition_terms = out2in(combine_addition_terms, name=\"combine_addition_terms\")\n",
"\n",
"# distribute\n",
"distribute_mul_over_sub.rewrite(fgraph)\n",
"# merge equivalent terms\n",
"MergeOptimizer().rewrite(fgraph)\n",
"# combine equivalent terms\n",
"combine_addition_terms.rewrite(fgraph)\n",
"# extract rewritten expression\n",
"expr = fgraph.outputs[0]"
]
},
{
"cell_type": "code",
"execution_count": 101,
"metadata": {
"ExecuteTime": {
"end_time": "2025-08-14T11:32:09.446341276Z",
"start_time": "2025-08-14T11:31:56.276558Z"
},
"id": "4qGBap72Xvvn"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Add [id A]\n",
" ├─ Mul [id B]\n",
" │ ├─ Mul [id C]\n",
" │ │ ├─ price [id D]\n",
" │ │ └─ ExpandDims{axis=0} [id E]\n",
" │ │ └─ price_effect [id F]\n",
" │ └─ ExpandDims{axis=0} [id G]\n",
" │ └─ 2 [id H]\n",
" └─ Add [id I]\n",
" ├─ Mul [id J]\n",
" │ ├─ Neg [id K]\n",
" │ │ └─ ExpandDims{axis=0} [id L]\n",
" │ │ └─ marginal_cost [id M]\n",
" │ └─ ExpandDims{axis=0} [id E]\n",
" │ └─ ···\n",
" ├─ trend [id N]\n",
" └─ seasonality [id O]\n"
]
},
{
"data": {
"text/plain": [
"<ipykernel.iostream.OutStream at 0x7fcbccd613c0>"
]
},
"execution_count": 101,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"expr.dprint()"
]
},
{
"cell_type": "code",
"execution_count": 102,
"metadata": {
"ExecuteTime": {
"end_time": "2025-08-14T11:32:09.447033733Z",
"start_time": "2025-08-14T11:31:59.481064Z"
},
"id": "8Fq10k2LcCY-"
},
"outputs": [],
"source": [
"# Create variations of a graph for pattern matching\n",
"rewrites = [\n",
" out2in(\n",
" PatternNodeRewriter((pt.add, \"x\", \"y\"), (pt.add, \"y\", \"x\")),\n",
" name=\"commutative_add\",\n",
" ignore_newtrees=True,\n",
" ),\n",
" out2in(\n",
" PatternNodeRewriter((pt.mul, \"x\", \"y\"), (pt.mul, \"y\", \"x\")),\n",
" name=\"commutative_mul\",\n",
" ignore_newtrees=True,\n",
" ),\n",
" out2in(\n",
" PatternNodeRewriter(\n",
" (pt.mul, (pt.mul, \"x\", \"y\"), \"z\"), (pt.mul, \"x\", (pt.mul, \"y\", \"z\"))\n",
" ),\n",
" name=\"associative_mul\",\n",
" ignore_newtrees=True,\n",
" ),\n",
"]\n",
"\n",
"\n",
"def yield_arithmetic_variants(expr, n):\n",
" fgraph = FunctionGraph(outputs=[expr], clone=False)\n",
" while n > 0:\n",
" rewrite = random.choice(rewrites)\n",
" res = rewrite.apply(fgraph)\n",
" n -= 1\n",
" if res:\n",
" yield fgraph.outputs[0]\n",
" yield fgraph.outputs[0]"
]
},
{
"cell_type": "code",
"execution_count": 103,
"metadata": {
"ExecuteTime": {
"end_time": "2025-08-14T11:32:09.447578804Z",
"start_time": "2025-08-14T11:31:59.831774Z"
},
"colab": {
"base_uri": "https://localhost:8080/",
"height": 198
},
"id": "h9K70LGxYJ7E",
"outputId": "793e98c6-4570-43bf-a452-eb6d0d745dc7"
},
"outputs": [
{
"data": {
"text/plain": [
"{~price: price, ~a: Mul.0, ~b: Add.0}"
]
},
"execution_count": 103,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Rewrite graph randomly until we match price * a + b\n",
"a, b, price_ = var(\"a\"), var(\"b\"), var(\"price\")\n",
"pattern = etuple(pt.add, etuple(pt.mul, price_, a), b)\n",
"\n",
"for variant in yield_arithmetic_variants(expr, n=100):\n",
" match_dict = unify(variant, pattern)\n",
" if match_dict and match_dict[price_] is price:\n",
" break\n",
"else:\n",
" raise ValueError(\"No matching variant found\")\n",
"match_dict"
]
},
{
"cell_type": "code",
"execution_count": 104,
"metadata": {
"ExecuteTime": {
"end_time": "2025-08-14T11:32:09.448905279Z",
"start_time": "2025-08-14T11:32:01.264784Z"
},
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "8M-qjXBKa6Db",
"outputId": "cdce40c4-e1dd-4757-f4d6-f368643bb5c1"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"True_div [id A]\n",
" ├─ Neg [id B]\n",
" │ └─ Add [id C]\n",
" │ ├─ Mul [id D]\n",
" │ │ ├─ Neg [id E]\n",
" │ │ │ └─ ExpandDims{axis=0} [id F]\n",
" │ │ │ └─ marginal_cost [id G]\n",
" │ │ └─ ExpandDims{axis=0} [id H]\n",
" │ │ └─ price_effect [id I]\n",
" │ ├─ trend [id J]\n",
" │ └─ seasonality [id K]\n",
" └─ Mul [id L]\n",
" ├─ ExpandDims{axis=0} [id H]\n",
" │ └─ ···\n",
" └─ ExpandDims{axis=0} [id M]\n",
" └─ 2 [id N]\n"
]
},
{
"data": {
"text/plain": [
"<ipykernel.iostream.OutStream at 0x7fcbccd613c0>"
]
},
"execution_count": 104,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"optimal_result = -match_dict[b] / match_dict[a]\n",
"optimal_result.dprint()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"ExecuteTime": {
"end_time": "2025-08-14T11:32:09.449645675Z",
"start_time": "2025-08-14T11:25:52.269957Z"
}
},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Loading
Loading