Skip to content

jherold2/Poseidon-LLM---lite

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

5 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Poseidon-Lite

A demonstration of enterprise-grade orchestration for LLM and agentic systems.

Architecture

Poseidon-Lite is an open demonstration of how to build and orchestrate a modular Retrieval-Augmented Generation (RAG) and Agentic LLM stack β€” without exposing proprietary data or internal logic.
It focuses on showing engineering design patterns, modular pipeline structure, and production readiness that mirror enterprise deployments.


πŸ—οΈ Architecture Overview

High-level flow:

Document ingestion β†’ Text chunking β†’ Embedding β†’ Vector store β†’ Retrieval β†’ LLM Agent β†’ Evaluation

yaml Copy code

Core modules:

  • Pipelines β€” Handle ingestion, preprocessing, and embeddings.
  • Agents β€” Orchestrate multi-step reasoning, retrieve context, and call tools.
  • Evaluation β€” Validate retrieval accuracy and latency.
  • Configs β€” Store environment and model parameters with clear separation of secrets.

🧩 Example Components

Module Description Key File
Embeddings Converts text docs to vector embeddings using FAISS/Chroma src/pipelines/embed_documents.py
Chunking Splits text into semantically meaningful chunks src/pipelines/chunker.py
Agent Orchestrator Manages tool-calling and chain-of-thought src/agents/orchestrator.py
Prompt Templates Declarative prompt configurations src/agents/prompts/
Evaluation Benchmarking retrieval quality src/evaluation/eval_metrics.py

πŸš€ Quickstart

git clone https://github.com/jherold2/Poseidon-Lite.git
cd Poseidon-Lite
pip install -r requirements.txt

# Set environment variables
cp configs/secrets_template.env .env

# Run embedding and retrieval demo
python src/pipelines/embed_documents.py
python notebooks/demo_agent.ipynb

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages