A demonstration of enterprise-grade orchestration for LLM and agentic systems.
Poseidon-Lite is an open demonstration of how to build and orchestrate a modular Retrieval-Augmented Generation (RAG) and Agentic LLM stack β without exposing proprietary data or internal logic.
It focuses on showing engineering design patterns, modular pipeline structure, and production readiness that mirror enterprise deployments.
High-level flow:
Document ingestion β Text chunking β Embedding β Vector store β Retrieval β LLM Agent β Evaluation
yaml Copy code
Core modules:
- Pipelines β Handle ingestion, preprocessing, and embeddings.
- Agents β Orchestrate multi-step reasoning, retrieve context, and call tools.
- Evaluation β Validate retrieval accuracy and latency.
- Configs β Store environment and model parameters with clear separation of secrets.
| Module | Description | Key File |
|---|---|---|
| Embeddings | Converts text docs to vector embeddings using FAISS/Chroma | src/pipelines/embed_documents.py |
| Chunking | Splits text into semantically meaningful chunks | src/pipelines/chunker.py |
| Agent Orchestrator | Manages tool-calling and chain-of-thought | src/agents/orchestrator.py |
| Prompt Templates | Declarative prompt configurations | src/agents/prompts/ |
| Evaluation | Benchmarking retrieval quality | src/evaluation/eval_metrics.py |
git clone https://github.com/jherold2/Poseidon-Lite.git
cd Poseidon-Lite
pip install -r requirements.txt
# Set environment variables
cp configs/secrets_template.env .env
# Run embedding and retrieval demo
python src/pipelines/embed_documents.py
python notebooks/demo_agent.ipynb