Skip to content
4 changes: 2 additions & 2 deletions EuclideanGeometry/Check.lean
Original file line number Diff line number Diff line change
Expand Up @@ -90,7 +90,7 @@ theorem let_test_prop (α : Prop) (a : α) (p : α → Prop) : (let x := a; p x)
intro x
exact x _

def main_theorem (A B C : P) (h : ¬ collinear A B C) : Prop := by
def main_theorem (A B C : P) (h : ¬ Collinear A B C) : Prop := by
let hAB : B≠A := by exact (ne_of_not_collinear h).2.2
let hCB : C ≠ B := by exact (ne_of_not_collinear h).1
let l₁ := LIN A B hAB
Expand All @@ -99,7 +99,7 @@ def main_theorem (A B C : P) (h : ¬ collinear A B C) : Prop := by
let E := Line.inx l₁ l₂ h'
exact (E = B)

example (A B C : P) (h : ¬ collinear A B C) : main_theorem A B C h := by
example (A B C : P) (h : ¬ Collinear A B C) : main_theorem A B C h := by
unfold main_theorem
-- rw [let_test (α := B≠A) (a := (ne_of_not_collinear h).2.2) (p := fun x => let hCB := (_ : C ≠ B);
-- let l₁ := LIN A B x;
Expand Down
2 changes: 1 addition & 1 deletion EuclideanGeometry/Example/AOPS/Chap3.lean
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ Theorem: We have $BX = CY$ and $MX = MY$.
-/

-- Let $\triangle ABC$ be an isosceles triangle in which $AB = AC$.
variable {A B C : P} {hnd : ¬ collinear A B C} {isoceles_ABC : (▵ A B C).IsIsoceles}
variable {A B C : P} {hnd : ¬ Collinear A B C} {isoceles_ABC : (▵ A B C).IsIsoceles}
-- Claim: $A \ne B$ and $A \neq C$. This is because vertices of nondegenerate triangles are distinct.
lemma A_ne_B : A ≠ B := (ne_of_not_collinear hnd).2.2.symm
lemma A_ne_C : A ≠ C := (ne_of_not_collinear hnd).2.1
Expand Down
8 changes: 4 additions & 4 deletions EuclideanGeometry/Example/AOPS/Chap5.lean
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ namespace AOPS_Problem_5_7
Prove that $\frac{EY}{EX}=\frac{AD}{DB} -/

--Triangle A B C
variable {A B C : P} {hnd : ¬ collinear A B C}
variable {A B C : P} {hnd : ¬ Collinear A B C}
lemma b_ne_a : B ≠ A := sorry
lemma c_ne_a : C ≠ A := sorry
lemma c_ne_b : C ≠ B := sorry
Expand Down Expand Up @@ -60,7 +60,7 @@ Prove that $IJ\prar BC$-/
--It is simpler to use vectors but I think we should avoid vectors.

--Nontrivial triangle A B C
variable {A B C : P} {hnd : ¬ collinear A B C}
variable {A B C : P} {hnd : ¬ Collinear A B C}
lemma b_ne_a : B ≠ A := sorry
lemma c_ne_a : C ≠ A := sorry
lemma c_ne_b : C ≠ B := sorry
Expand All @@ -82,7 +82,7 @@ namespace AOPS_Problem_5_14
Prove that AX^2 = BX \codt CX. -/

-- In right triangle $\triangle PQR$, $\angle QPR = 90^{\circ}$
variable {A B C : P} {hnd : ¬ collinear A B C}
variable {A B C : P} {hnd : ¬ Collinear A B C}
-- Claim: $A \ne B$ and $B \ne C$ and $C \ne A$.
lemma a_ne_b : A ≠ B := sorry
lemma b_ne_c : B ≠ C := sorry
Expand All @@ -102,7 +102,7 @@ $M$ is the midpoint of $AB$
Prove that $MQ \parallel BC$ -/

-- We have triangle $\triangle ABC$ with $AC \ne BC$
variable {A B C : P} {hnd : ¬ collinear A B C} {hne : (SEG A C).length ≠ (SEG B C).length}
variable {A B C : P} {hnd : ¬ Collinear A B C} {hne : (SEG A C).length ≠ (SEG B C).length}
-- Claim: $A \ne B$ and $B \ne C$ and $C \ne A$.
lemma a_ne_b : A ≠ B := sorry
lemma b_ne_c : B ≠ C := sorry
Expand Down
4 changes: 2 additions & 2 deletions EuclideanGeometry/Example/AOPS/Chap5a.lean
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ structure Setting (Plane : Type _) [EuclideanPlane Plane] where
A : Plane
B : Plane
C : Plane
not_collinear_ABC : ¬ collinear A B C
not_collinear_ABC : ¬ Collinear A B C
-- Claim :$C \ne A$
B_ne_A : B ≠ A :=
-- This is because vertices $B, C$ of a nondegenerate triangle are distinct.
Expand Down Expand Up @@ -86,7 +86,7 @@ structure Setting (Plane : Type _) [EuclideanPlane Plane] where
A : Plane
B : Plane
C : Plane
not_collinear_ABC : ¬ collinear A B C
not_collinear_ABC : ¬ Collinear A B C
-- Claim :$C \ne A$
B_ne_A : B ≠ A :=
-- This is because vertices $B, C$ of a nondegenerate triangle are distinct.
Expand Down
8 changes: 4 additions & 4 deletions EuclideanGeometry/Example/ArefWernick/Chap1.lean
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ In other words, let $\triangle A_1B_1C_1$ and $\triangle A_2B_2C_2$ be two trian
Prove that $\triangle A_1B_1C_1$ is congruent to $\triangle A_2B_2C_2$. -/

-- We have two triangles $\triangle A_1B_1C_1,A_2B_2C_2$ .
variable {A₁ B₁ C₁ A₂ B₂ C₂ : P} {hnd₁ : ¬ collinear A₁ B₁ C₁} {hnd₂ : ¬ collinear A₂ B₂ C₂}
variable {A₁ B₁ C₁ A₂ B₂ C₂ : P} {hnd₁ : ¬ Collinear A₁ B₁ C₁} {hnd₂ : ¬ Collinear A₂ B₂ C₂}
-- $M_1,M_2$ are midpoints of $B_1C_1,B_2,C_2$
variable {M₁ M₂ : P} {hm₁ : M₁ = (SEG B₁ C₁).midpoint} {hm₂ : M₂ = (SEG B₂ C₂).midpoint}
-- We have $A_1B_1 = A_2B_2$, $A_1C_1 = A_2C_2$, and $A_1M_1 = A_2M_2$.
Expand All @@ -32,7 +32,7 @@ namespace Aref_Wernick_Exercise_1_2
Prove that $\angle BFD = \pi / 2 - \angle CAB$. -/

-- We have triangle $\triangle ABC$
variable {A B C : P} {hnd : ¬ collinear A B C}
variable {A B C : P} {hnd : ¬ Collinear A B C}
-- Claim: $B \ne A$ and $C \ne A$ and $B \ne C$.
--This is because vertices of nondegenerate triangles are distinct.
lemma B_ne_a : B ≠ A := (ne_of_not_collinear hnd).2.2
Expand Down Expand Up @@ -60,8 +60,8 @@ lemma B_ne_f : B ≠ F := by
have inxb : is_inx B (LIN B C (ne_of_not_collinear hnd).1) (LIN A B (ne_of_not_collinear hnd).2.2) := by
exact ⟨(SegND B C (ne_of_not_collinear hnd).1).source_lies_on_toLine , (SegND A B (ne_of_not_collinear hnd).2.2).target_lies_on_toLine ⟩
exact d_ne_b (unique_of_inx_of_line_of_not_para line_neq inxb.symm inxd.symm)
have bcd_notcoli : ¬ collinear B C D := (Line.lies_on_line_of_pt_pt_iff_collinear (b_ne_c (hnd := hnd)).symm D).mpr.mt d_not_lies_on_bc
have b_not_lies_on_cd : ¬ B LiesOn (LIN C D d_ne_c) := (Line.lies_on_line_of_pt_pt_iff_collinear d_ne_c B).mp.mt (flip_collinear_snd_trd.mt (flip_collinear_fst_snd.mt bcd_notcoli))
have bcd_notcoli : ¬ Collinear B C D := (Line.lies_on_line_of_pt_pt_iff_collinear (b_ne_c (hnd := hnd)).symm D).mpr.mt d_not_lies_on_bc
have b_not_lies_on_cd : ¬ B LiesOn (LIN C D d_ne_c) := (Line.lies_on_line_of_pt_pt_iff_collinear d_ne_c B).mp.mt (Collinear.perm₁₃₂.mt (Collinear.perm₂₁₃.mt bcd_notcoli))
have f_lies_on_seg_cd : F LiesOn (SegND C D d_ne_c).1 := hf.2
exact (ne_of_lieson_and_not_lieson (SegND.lies_on_toLine_of_lie_on f_lies_on_seg_cd) b_not_lies_on_cd).symm
lemma d_ne_f : D ≠ F := sorry
Expand Down
12 changes: 6 additions & 6 deletions EuclideanGeometry/Example/Congruence_Exercise_ygr/Problem_1.lean
Original file line number Diff line number Diff line change
Expand Up @@ -24,8 +24,8 @@ structure Setting1 (Plane : Type _) [EuclideanPlane Plane] where
-- $A, E$ do not lie on $l$.
A : Plane
E : Plane
ABC_nd : ¬collinear A B C
EDF_nd : ¬collinear E D F
ABC_nd : ¬Collinear A B C
EDF_nd : ¬Collinear E D F
-- need A and E be at the same side of l!!
A_side : IsOnLeftSide A (SEG_nd B F)
E_side : IsOnLeftSide E (SEG_nd B F)
Expand All @@ -34,11 +34,11 @@ structure Setting1 (Plane : Type _) [EuclideanPlane Plane] where
-- $BC = DE$
h₂ : (SEG B C).length = (SEG D E).length
attribute [instance] Setting1.B_ne_F
lemma hnd₁ {Plane : Type _} [EuclideanPlane Plane] {e : Setting1 Plane}: ¬ collinear e.B e.A e.C := by
apply flip_collinear_fst_snd.mt
lemma hnd₁ {Plane : Type _} [EuclideanPlane Plane] {e : Setting1 Plane}: ¬ Collinear e.B e.A e.C := by
apply Collinear.perm₂₁₃.mt
exact e.ABC_nd
lemma hnd₂ {Plane : Type _} [EuclideanPlane Plane] {e : Setting1 Plane}: ¬ collinear e.D e.F e.E := by
apply perm_collinear_trd_fst_snd.mt
lemma hnd₂ {Plane : Type _} [EuclideanPlane Plane] {e : Setting1 Plane}: ¬ Collinear e.D e.F e.E := by
apply Collinear.perm₃₁₂.mt
exact e.EDF_nd
instance A_ne_B {Plane : Type _} [EuclideanPlane Plane] {e : Setting1 Plane}: PtNe e.A e.B := ⟨(ne_of_not_collinear hnd₁).2.2⟩
instance D_ne_E {Plane : Type _} [EuclideanPlane Plane] {e : Setting1 Plane}: PtNe e.D e.E := ⟨(ne_of_not_collinear hnd₂).2.1⟩
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -20,8 +20,8 @@ structure Setting1 (Plane : Type _) [EuclideanPlane Plane] where
h₁ : (SEG A B).length = (SEG D C).length
h₂ : (SEG D B).length = (SEG A C).length
-- nondegenerate
hnd₁ : ¬ collinear D B A
hnd₂ : ¬ collinear A C D
hnd₁ : ¬ Collinear D B A
hnd₂ : ¬ Collinear A C D
D_ne_A : D ≠ A :=(ne_of_not_collinear hnd₁).2.1
-- $B,C$ is on the same side of line $AD$.
B_side : IsOnRightSide B (SEG_nd A D D_ne_A)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -33,12 +33,12 @@ theorem Result {Plane : Type _} [EuclideanPlane Plane] (e : Setting Plane) : ∠
Because $DB = DC$ ,we have $\angle D B C = -\angle D C B$
$\angle A B D = \angle A B C - \angle D B C = \angle D C B - \angle A C B = --\angle A C D$
-/
have h₁ : ¬ collinear e.A e.B e.C := by
have h₁ : ¬ Collinear e.A e.B e.C := by
exact (Quadrilateral_cvx.not_collinear₁₂₄ (QDR_cvx e.A e.B e.D e.C e.cvx_ABDC))
have h₂ : ¬ collinear e.D e.B e.C := by
have h₂' : ¬ collinear e.B e.D e.C := by
have h₂ : ¬ Collinear e.D e.B e.C := by
have h₂' : ¬ Collinear e.B e.D e.C := by
exact (Quadrilateral_cvx.not_collinear₂₃₄ (QDR_cvx e.A e.B e.D e.C e.cvx_ABDC))
apply flip_collinear_fst_snd.mt h₂'
apply Collinear.perm₂₁₃.mt h₂'
have C_ne_B : e.C ≠ e.B := by
exact (Quadrilateral_cvx.nd₂₄ (QDR_cvx e.A e.B e.D e.C e.cvx_ABDC))
--Because $AB = AC$ ,we have $\angle A B C = -\angle A C B$.
Expand Down
10 changes: 5 additions & 5 deletions EuclideanGeometry/Example/Congruence_Exercise_ygr/Problem_4.lean
Original file line number Diff line number Diff line change
Expand Up @@ -18,8 +18,8 @@ structure Setting1 (Plane : Type _) [EuclideanPlane Plane] where
C : Plane
D : Plane
--some nondegenerate
hnd₁ : ¬ collinear B C A
hnd₂ : ¬ collinear B C D
hnd₁ : ¬ Collinear B C A
hnd₂ : ¬ Collinear B C D
--$A,D$ are on the opposite side of line $BC$,which satisfies $BD \para CA$(lemma needed), $BD = BC$
BD_eq_BC : (SEG B D).length = (SEG B C).length
instance B_ne_C {Plane : Type _} [EuclideanPlane Plane] {e : Setting1 Plane} : PtNe e.B e.C := ⟨(ne_of_not_collinear e.hnd₁).2.2.symm⟩
Expand All @@ -36,7 +36,7 @@ structure Setting2 (Plane : Type _) [EuclideanPlane Plane] extends Setting1 Plan
E : Plane
E_int : E LiesInt (SEG_nd B C)
E_position : (SEG B E).length = (SEG A C).length
lemma hnd₃ {Plane : Type _} [EuclideanPlane Plane] {e : Setting2 Plane}: ¬ collinear e.B e.E e.D := by sorry
lemma hnd₃ {Plane : Type _} [EuclideanPlane Plane] {e : Setting2 Plane}: ¬ Collinear e.B e.E e.D := by sorry
instance E_ne_D {Plane : Type _} [EuclideanPlane Plane] {e : Setting2 Plane} : PtNe e.E e.D := ⟨(ne_of_not_collinear hnd₃).1.symm⟩
instance A_ne_B {Plane : Type _} [EuclideanPlane Plane] {e : Setting2 Plane} : PtNe e.A e.B := ⟨(ne_of_not_collinear e.hnd₁).2.1.symm⟩
instance B_ne_E {Plane : Type _} [EuclideanPlane Plane] {e : Setting2 Plane} : PtNe e.B e.E := ⟨(ne_of_not_collinear hnd₃).2.2.symm⟩
Expand All @@ -52,8 +52,8 @@ theorem Result {Plane : Type _} [EuclideanPlane Plane] {e : Setting2 Plane} :
We have $\triangle B E D \congr_a \triangle C A B$
Thus $\angle B D E = -\angle C B A $.
-/
have hnd₁' : ¬ collinear e.C e.A e.B := by
apply perm_collinear_trd_fst_snd.mt
have hnd₁' : ¬ Collinear e.C e.A e.B := by
apply Collinear.perm₃₁₂.mt
exact e.hnd₁
--$DB = BC$
have e₂ : (SEG e.D e.B).length = (SEG e.B e.C).length := by
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -13,11 +13,11 @@ In $▵ ABC$, $D, E$ are two different points on side $BC$, $AD = AE$, $∠ BAD
Prove that $AB = AC$.
-/
-- Define $▵ ABC$.
variable {A B C : P} {hnd1 : ¬ collinear A B C}
variable {A B C : P} {hnd1 : ¬ Collinear A B C}
-- $D, E$ are two different points on side $BC$.
variable {D E : P} {hd : D LiesInt SEG B C} {he : E LiesInt SEG B C}
-- nondegenerate
lemma hnd2 : ¬ collinear A D E := by sorry
lemma hnd2 : ¬ Collinear A D E := by sorry
lemma a_ne_b : A ≠ B := by sorry
lemma a_ne_d : A ≠ D := by sorry
lemma a_ne_c : A ≠ C := by sorry
Expand All @@ -29,8 +29,8 @@ variable {hang : ∠ B A D a_ne_b a_ne_d = -∠ C A E a_ne_c a_ne_e}
-- State the main goal.
theorem Wuwowuji_Problem_1_6 : (SEG A B).length = (SEG A C).length := by
-- nondegenerate
have hnd3 : ¬ collinear B D A := by sorry
have hnd4 : ¬ collinear C E A := by sorry
have hnd3 : ¬ Collinear B D A := by sorry
have hnd4 : ¬ Collinear C E A := by sorry
-- Use ASA to prove $▵ BDA ≅ₐ ▵ CEA$.
have h : (TRI_nd B D A hnd3) ≅ₐ (TRI_nd C E A hnd4) := by
apply TriangleND.acongr_of_ASA
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ Prove that $AD = BC$.
-- $AD$ and $BC$ intersect at $O$.
variable {A B C D O: P} {h1 : O LiesInt (SEG A D)} {h2 : O LiesInt (SEG B C)}
-- nondegenerate
variable {hnd1 : ¬ collinear C B A} {hnd2 : ¬ collinear D A B}
variable {hnd1 : ¬ Collinear C B A} {hnd2 : ¬ Collinear D A B}
lemma a_ne_b : A ≠ B := by sorry
lemma a_ne_c : A ≠ C := by sorry
lemma a_ne_d : A ≠ D := by sorry
Expand All @@ -33,7 +33,7 @@ theorem Wuwowuji_Problem_1_7 : (SEG A D).length = (SEG B C).length := by
have o_ne_b : O ≠ B := by sorry
have o_ne_c : O ≠ C := by sorry
have o_ne_d : O ≠ D := by sorry
have hnd3 : ¬ collinear O A B := by sorry
have hnd3 : ¬ Collinear O A B := by sorry
-- $▵ OAB$ is isoceles because $OA = OB$.
have hisoc : (TRI_nd O A B hnd3).1.IsIsoceles := by
calc
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ Prove that $▵ OPD ≅ₐ ▵ OPE$.
-/

-- Define $A, B, C, O$ on the plane.
variable {A B C O : Plane} {hnd1 : ¬ collinear O A B} {hnd2 : ¬ collinear O B C} {hnd3 : ¬ collinear O C A}
variable {A B C O : Plane} {hnd1 : ¬ Collinear O A B} {hnd2 : ¬ Collinear O B C} {hnd3 : ¬ Collinear O C A}
-- nondegenerate
lemma o_ne_a : O ≠ A:= by sorry
lemma o_ne_b : O ≠ B := by sorry
Expand All @@ -26,8 +26,8 @@ variable {P : Plane} {hp : P LiesInt (SEG O C)}
-- $D, E$ is the perpendicular foot from $P$ to line $OA, OB$.
variable {D E : Plane} {hd : D = perp_foot P (LIN O A o_ne_a.symm)} {he : E = perp_foot P (LIN O B o_ne_b.symm)}
-- State the main goal.
lemma hnd4 : ¬ collinear O P D := by sorry
lemma hnd5 : ¬ collinear O P E := by sorry
lemma hnd4 : ¬ Collinear O P D := by sorry
lemma hnd5 : ¬ Collinear O P E := by sorry
theorem Wuwowuji_Problem_1_8 : (TRI_nd O P D hnd4) ≅ₐ (TRI_nd O P E hnd5) := by
sorry

Expand Down
2 changes: 1 addition & 1 deletion EuclideanGeometry/Example/ExerciseXT8.lean
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ Prove that $\angle AY_1Z_2 + \angle BZ_1X_2 + \angle CX_1Y_2 + \angle Y_1Z_2A +
-/

-- Let $\triangle ABC$ be a nondegenerate triangle.
variable {A B C : P} {hnd : ¬ collinear A B C}
variable {A B C : P} {hnd : ¬ Collinear A B C}

lemma c_ne_B : C ≠ B := sorry
lemma B_ne_a : B ≠ A := sorry
Expand Down
8 changes: 4 additions & 4 deletions EuclideanGeometry/Example/SCHAUM/Problem1.1.lean
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ Prove that $DM = EM$.
-/
/--/
--Let $\triangle ABC$ be an isosceles triangle in which $AB = AC$.
variable {A B C : P} {not_collinear_ABC: ¬ collinear A B C} {isoceles_ABC: (▵ A B C).IsIsoceles}
variable {A B C : P} {not_collinear_ABC: ¬ Collinear A B C} {isoceles_ABC: (▵ A B C).IsIsoceles}
--Let $D$ be a point on $AB$.
variable {D : P} {D_on_seg: D LiesInt (SEG A B)}
--Let $E$ be a point on $AC$
Expand All @@ -31,7 +31,7 @@ structure Setting (Plane : Type _) [EuclideanPlane Plane] where
A : Plane
B : Plane
C : Plane
not_collinear_ABC : ¬ collinear A B C
not_collinear_ABC : ¬ Collinear A B C
isoc_ABC : (▵ A B C).IsIsoceles
--Let $D$ be a point on $AB$.
D : Plane
Expand Down Expand Up @@ -66,9 +66,9 @@ theorem Result {Plane : Type _} [EuclideanPlane Plane] (e : Setting Plane) : (SE
_ = (SEG e.C e.A).length := e.isoc_ABC.symm
_ = (SEG e.A e.C).length := length_of_rev_eq_length'
--Triangle B D M nondegenerate.
have h₁ : ¬ collinear e.B e.D e.M := by sorry
have h₁ : ¬ Collinear e.B e.D e.M := by sorry
--Triangle C E M nondegenerate.
have h₂ : ¬ collinear e.C e.E e.M := by sorry
have h₂ : ¬ Collinear e.C e.E e.M := by sorry
--Points not equal for the definition of angle is not invalid.
--$D \ne B$ and $M \ne B$ for ∠ D B M.
haveI d_ne_b : PtNe e.D e.B := ⟨ (ne_of_not_collinear h₁).2.2⟩
Expand Down
2 changes: 1 addition & 1 deletion EuclideanGeometry/Example/SCHAUM/Problem1.12.lean
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@ theorem SCHAUM_Problem_1_12 : Quadrilateral.IsParallelogram (QDR A B C D) := by
sorry
/-
apply is_prg_of_para_eq_length'
· unfold perpendicular at *
· unfold Perpendicular at *
unfold parallel
have h : toProj (SegND B C (c_ne_B (hconv := hconv))) = toProj (SegND A D (A_ne_d (hconv := hconv)).symm) := by
calc
Expand Down
6 changes: 3 additions & 3 deletions EuclideanGeometry/Example/SCHAUM/Problem1.14.lean
Original file line number Diff line number Diff line change
Expand Up @@ -64,8 +64,8 @@ theorem result1 {Plane : Type _} [EuclideanPlane Plane] (e : Setting2 Plane) : (
Thus $\triangle MBP \congr \triangle NCQ$ (by AAS),
which implies $PM = QN$.
-/
have not_collinear_MBP : ¬ collinear e.M e.B e.P := by sorry
have not_collinear_NDQ : ¬ collinear e.N e.D e.Q := by sorry
have not_collinear_MBP : ¬ Collinear e.M e.B e.P := by sorry
have not_collinear_NDQ : ¬ Collinear e.N e.D e.Q := by sorry
have B_ne_M : e.B ≠ e.M := by sorry
have P_ne_M : e.P ≠ e.M := by sorry
have D_ne_N : e.D ≠ e.N := by sorry
Expand All @@ -85,7 +85,7 @@ theorem result2 {Plane : Type _} [EuclideanPlane Plane] (e : Setting2 Plane) : (
-- We have $BD \perp QN$ because $N$ is the perpendicular foot from $Q$ to $BD$.
have BD_perp_QN : LIN e.B e.D e.D_ne_B ⟂ LIN e.Q e.N e.N_ne_Q := by
simp only [e.perp_foot_N]
exact perpendicular.symm (line_of_self_perp_foot_perp_line_of_not_lies_on e.not_Q_lieson_BD)
exact Perpendicular.symm (line_of_self_perp_foot_perp_line_of_not_lies_on e.not_Q_lieson_BD)
-- then $PM \perp QN$ because $PM \perp BD$ and $BD \perp QN$.
exact parallel_of_perp_perp (l₂ := (LIN e.B e.D e.D_ne_B)) PM_perp_BD BD_perp_QN

Expand Down
8 changes: 4 additions & 4 deletions EuclideanGeometry/Example/SCHAUM/Problem1.2'.lean
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ structure Setting (Plane : Type _) [EuclideanPlane Plane] where
A : Plane
B : Plane
C : Plane
not_collinear_ABC : ¬ collinear A B C
not_collinear_ABC : ¬ Collinear A B C
isoceles_ABC : (▵ A B C).IsIsoceles
--Let $D$ be a point on $AB$.
D : Plane
Expand All @@ -46,7 +46,7 @@ structure Setting1 (Plane : Type _) [EuclideanPlane Plane] where
A : Plane
B : Plane
C : Plane
not_collinear_ABC : ¬ collinear A B C
not_collinear_ABC : ¬ Collinear A B C
hisoc : (▵ A B C).IsIsoceles
--Let $D$ be a point on $AB$.
D : Plane
Expand Down Expand Up @@ -118,15 +118,15 @@ theorem result {Plane : Type _} [EuclideanPlane Plane] (e : Setting Plane) : (SE
-- We have $C \ne B$.
have C_ne_B : e.C ≠ e.B := (ne_of_not_collinear e.not_collinear_ABC).1
-- We have $\triangle PBD$ is nondegenerate
have not_collinear_PBD : ¬ collinear e.P e.B e.D := by sorry
have not_collinear_PBD : ¬ Collinear e.P e.B e.D := by sorry
-- We have $B \ne D$.
have B_ne_D : e.B ≠ e.D := (ne_of_not_collinear not_collinear_PBD).1.symm
-- We have $P \ne D$.
have P_ne_D : e.P ≠ e.D := (ne_of_not_collinear not_collinear_PBD).2.1
-- We have $P \ne B$.
have P_ne_B : e.P ≠ e.B := (ne_of_not_collinear not_collinear_PBD).2.2.symm
-- We have $\triangle QCE$ is nondegenerate
have not_collinear_QCE : ¬ collinear e.Q e.C e.E := by sorry
have not_collinear_QCE : ¬ Collinear e.Q e.C e.E := by sorry
-- We have $C \ne E$.
have C_ne_E : e.C ≠ e.E := (ne_of_not_collinear not_collinear_QCE).1.symm
-- We have $Q \ne E$.
Expand Down
6 changes: 3 additions & 3 deletions EuclideanGeometry/Example/SCHAUM/Problem1.2.lean
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ Prove that $DP = EQ$.
-/

--Let $\triangle ABC$ be an isosceles triangle in which $AB = AC$.
variable {A B C : Plane} {not_collinear_ABC: ¬ collinear A B C} {isoceles_ABC: (▵ A B C).IsIsoceles}
variable {A B C : Plane} {not_collinear_ABC: ¬ Collinear A B C} {isoceles_ABC: (▵ A B C).IsIsoceles}
--Let $D$ be a point on $AB$.
variable {D : Plane} {D_int_AB: D LiesInt (SEG A B)}
--Let $E$ be a point on $AC$
Expand Down Expand Up @@ -96,15 +96,15 @@ theorem Problem1_2_ : (SEG D P).length = (SEG E Q).length := by
-- We have $C \ne B$.
have c_ne_b : C ≠ B := (ne_of_not_collinear not_collinear_ABC).1
-- We have $\triangle PBD$ is nondegenerate
have not_collinear_ABC1 : ¬ collinear P B D := by sorry
have not_collinear_ABC1 : ¬ Collinear P B D := by sorry
-- We have $B \ne D$.
have b_ne_d : B ≠ D := (ne_of_not_collinear not_collinear_ABC1).1.symm
-- We have $P \ne D$.
have p_ne_d : P ≠ D := (ne_of_not_collinear not_collinear_ABC1).2.1
-- We have $P \ne B$.
have p_ne_b : P ≠ B := (ne_of_not_collinear not_collinear_ABC1).2.2.symm
-- We have $\triangle QCE$ is nondegenerate
have not_collinear_ABC2 : ¬ collinear Q C E := by sorry
have not_collinear_ABC2 : ¬ Collinear Q C E := by sorry
-- We have $C \ne E$.
have c_ne_e : C ≠ E := (ne_of_not_collinear not_collinear_ABC2).1.symm
-- We have $Q \ne E$.
Expand Down
Loading