This repository contains the official implementation associated with the paper "AutoURDF: Unsupervised Robot Modeling from Point Cloud Frames Using Cluster Registration".
# setup a vitural environment
conda create -n autourdf python=3.9
conda activate autourdf
We used pytorch3D, pybullet, open3d, pyvista.
For pytorch and pytroch3D installation, please follow this instruction: pytorch3D installation.
Ubuntu 22.04 & CUDA 12.4
python==3.9
torch==2.4.1
torchvision==0.19.1
pytorch3d==0.7.7
pip install -r requirements.txt
Collect point cloud sequences, by default wx200_5, 5 sequences
bash scripts/dataset.sh
Registration, by default wx200_5, run 5 sequences
bash scripts/registration.sh
Output URDF, by default wx200_5, run 1 or 5 sequences, unknown DoF infomation with 5 sequences, 50 frames
python PointCloud/coord_map.py --robot wx200_5 --unknown_dof
with only 1 sequence, 10 frames
python PointCloud/coord_map.py --robot wx200_5 --end_video 1 --unknown_dof
We sincerely thank Changxi Zheng and Ruoshi Liu for their invaluable feedback.
@article{lin2024autourdf,
title={AutoURDF: Unsupervised Robot Modeling from Point Cloud Frames Using Cluster Registration},
author={Lin, Jiong and Zhang, Lechen and Lee, Kwansoo and Ning, Jialong and Goldfeder, Judah and Lipson, Hod},
journal={arXiv preprint arXiv:2412.05507},
year={2024}
}
Our website template is based on:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

