|
| 1 | +import { generateObject } from 'ai'; |
| 2 | +import { openai } from '@ai-sdk/openai'; |
| 3 | +import { z } from 'zod'; |
| 4 | +import { logger } from '../logger'; |
| 5 | + |
| 6 | +// JSON Resume schema for structured output |
| 7 | +const resumeSchema = z.object({ |
| 8 | + basics: z |
| 9 | + .object({ |
| 10 | + name: z.string().optional(), |
| 11 | + label: z.string().optional(), |
| 12 | + image: z.string().optional(), |
| 13 | + email: z.string().optional(), |
| 14 | + phone: z.string().optional(), |
| 15 | + url: z.string().optional(), |
| 16 | + summary: z.string().optional(), |
| 17 | + location: z |
| 18 | + .object({ |
| 19 | + address: z.string().optional(), |
| 20 | + postalCode: z.string().optional(), |
| 21 | + city: z.string().optional(), |
| 22 | + countryCode: z.string().optional(), |
| 23 | + region: z.string().optional(), |
| 24 | + }) |
| 25 | + .optional(), |
| 26 | + profiles: z |
| 27 | + .array( |
| 28 | + z.object({ |
| 29 | + network: z.string().optional(), |
| 30 | + username: z.string().optional(), |
| 31 | + url: z.string().optional(), |
| 32 | + }) |
| 33 | + ) |
| 34 | + .optional(), |
| 35 | + }) |
| 36 | + .optional(), |
| 37 | + work: z |
| 38 | + .array( |
| 39 | + z.object({ |
| 40 | + name: z.string().optional(), |
| 41 | + position: z.string().optional(), |
| 42 | + url: z.string().optional(), |
| 43 | + startDate: z.string().optional(), |
| 44 | + endDate: z.string().optional(), |
| 45 | + summary: z.string().optional(), |
| 46 | + highlights: z.array(z.string()).optional(), |
| 47 | + }) |
| 48 | + ) |
| 49 | + .optional(), |
| 50 | + volunteer: z |
| 51 | + .array( |
| 52 | + z.object({ |
| 53 | + organization: z.string().optional(), |
| 54 | + position: z.string().optional(), |
| 55 | + url: z.string().optional(), |
| 56 | + startDate: z.string().optional(), |
| 57 | + endDate: z.string().optional(), |
| 58 | + summary: z.string().optional(), |
| 59 | + highlights: z.array(z.string()).optional(), |
| 60 | + }) |
| 61 | + ) |
| 62 | + .optional(), |
| 63 | + education: z |
| 64 | + .array( |
| 65 | + z.object({ |
| 66 | + institution: z.string().optional(), |
| 67 | + url: z.string().optional(), |
| 68 | + area: z.string().optional(), |
| 69 | + studyType: z.string().optional(), |
| 70 | + startDate: z.string().optional(), |
| 71 | + endDate: z.string().optional(), |
| 72 | + score: z.string().optional(), |
| 73 | + courses: z.array(z.string()).optional(), |
| 74 | + }) |
| 75 | + ) |
| 76 | + .optional(), |
| 77 | + awards: z |
| 78 | + .array( |
| 79 | + z.object({ |
| 80 | + title: z.string().optional(), |
| 81 | + date: z.string().optional(), |
| 82 | + awarder: z.string().optional(), |
| 83 | + summary: z.string().optional(), |
| 84 | + }) |
| 85 | + ) |
| 86 | + .optional(), |
| 87 | + certificates: z |
| 88 | + .array( |
| 89 | + z.object({ |
| 90 | + name: z.string().optional(), |
| 91 | + date: z.string().optional(), |
| 92 | + issuer: z.string().optional(), |
| 93 | + url: z.string().optional(), |
| 94 | + }) |
| 95 | + ) |
| 96 | + .optional(), |
| 97 | + publications: z |
| 98 | + .array( |
| 99 | + z.object({ |
| 100 | + name: z.string().optional(), |
| 101 | + publisher: z.string().optional(), |
| 102 | + releaseDate: z.string().optional(), |
| 103 | + url: z.string().optional(), |
| 104 | + summary: z.string().optional(), |
| 105 | + }) |
| 106 | + ) |
| 107 | + .optional(), |
| 108 | + skills: z |
| 109 | + .array( |
| 110 | + z.object({ |
| 111 | + name: z.string().optional(), |
| 112 | + level: z.string().optional(), |
| 113 | + keywords: z.array(z.string()).optional(), |
| 114 | + }) |
| 115 | + ) |
| 116 | + .optional(), |
| 117 | + languages: z |
| 118 | + .array( |
| 119 | + z.object({ |
| 120 | + language: z.string().optional(), |
| 121 | + fluency: z.string().optional(), |
| 122 | + }) |
| 123 | + ) |
| 124 | + .optional(), |
| 125 | + interests: z |
| 126 | + .array( |
| 127 | + z.object({ |
| 128 | + name: z.string().optional(), |
| 129 | + keywords: z.array(z.string()).optional(), |
| 130 | + }) |
| 131 | + ) |
| 132 | + .optional(), |
| 133 | + references: z |
| 134 | + .array( |
| 135 | + z.object({ |
| 136 | + name: z.string().optional(), |
| 137 | + reference: z.string().optional(), |
| 138 | + }) |
| 139 | + ) |
| 140 | + .optional(), |
| 141 | + projects: z |
| 142 | + .array( |
| 143 | + z.object({ |
| 144 | + name: z.string().optional(), |
| 145 | + startDate: z.string().optional(), |
| 146 | + endDate: z.string().optional(), |
| 147 | + description: z.string().optional(), |
| 148 | + highlights: z.array(z.string()).optional(), |
| 149 | + url: z.string().optional(), |
| 150 | + }) |
| 151 | + ) |
| 152 | + .optional(), |
| 153 | + meta: z |
| 154 | + .object({ |
| 155 | + canonical: z.string().optional(), |
| 156 | + version: z.string().optional(), |
| 157 | + lastModified: z.string().optional(), |
| 158 | + theme: z.string().optional(), |
| 159 | + }) |
| 160 | + .optional(), |
| 161 | +}); |
| 162 | + |
| 163 | +const SYSTEM_PROMPT = `You are a professional resume editor. Your task is to modify a JSON Resume based on user instructions. |
| 164 | +
|
| 165 | +IMPORTANT RULES: |
| 166 | +1. ONLY modify content that is relevant to the user's request |
| 167 | +2. NEVER invent fake information, companies, or experiences |
| 168 | +3. Keep all dates, company names, and factual information accurate |
| 169 | +4. You may rewrite summaries, highlights, and descriptions to emphasize certain aspects |
| 170 | +5. You may reorder items to prioritize relevant experience |
| 171 | +6. You may adjust the label/title to better match the target role |
| 172 | +7. Preserve the overall structure and all existing sections |
| 173 | +8. Make the changes sound natural and professional |
| 174 | +
|
| 175 | +Return the complete modified resume in JSON Resume format.`; |
| 176 | + |
| 177 | +/** |
| 178 | + * Transform a resume using an LLM based on a user prompt |
| 179 | + * @param {Object} resume - The original JSON Resume object |
| 180 | + * @param {string} prompt - The user's transformation prompt |
| 181 | + * @returns {Promise<Object>} The transformed resume |
| 182 | + */ |
| 183 | +export async function transformResumeWithLLM(resume, prompt) { |
| 184 | + if (!process.env.OPENAI_API_KEY) { |
| 185 | + logger.warn('OPENAI_API_KEY not set, skipping LLM transformation'); |
| 186 | + return resume; |
| 187 | + } |
| 188 | + |
| 189 | + if (!prompt || typeof prompt !== 'string' || prompt.trim().length === 0) { |
| 190 | + return resume; |
| 191 | + } |
| 192 | + |
| 193 | + const startTime = Date.now(); |
| 194 | + |
| 195 | + try { |
| 196 | + logger.info( |
| 197 | + { prompt: prompt.substring(0, 100) }, |
| 198 | + 'Starting LLM resume transformation' |
| 199 | + ); |
| 200 | + |
| 201 | + const result = await generateObject({ |
| 202 | + model: openai('gpt-4.1-mini'), |
| 203 | + schema: resumeSchema, |
| 204 | + system: SYSTEM_PROMPT, |
| 205 | + prompt: `Here is the original resume:\n\n${JSON.stringify( |
| 206 | + resume, |
| 207 | + null, |
| 208 | + 2 |
| 209 | + )}\n\nUser request: ${prompt}\n\nPlease modify the resume according to the user's request and return the complete updated resume.`, |
| 210 | + }); |
| 211 | + |
| 212 | + const duration = Date.now() - startTime; |
| 213 | + logger.info( |
| 214 | + { duration, prompt: prompt.substring(0, 100) }, |
| 215 | + 'LLM transformation completed' |
| 216 | + ); |
| 217 | + |
| 218 | + return result.object; |
| 219 | + } catch (error) { |
| 220 | + logger.error( |
| 221 | + { error: error.message, prompt: prompt.substring(0, 100) }, |
| 222 | + 'LLM transformation failed' |
| 223 | + ); |
| 224 | + // Return original resume on error |
| 225 | + return resume; |
| 226 | + } |
| 227 | +} |
0 commit comments