Skip to content

jtwolfe/oparl-mcp-server

Repository files navigation

OParl MCP Server

OParl Logo FastMCP Logo

A Model Context Protocol (MCP) server for accessing OParl parliamentary data APIs

GitHub stars GitHub forks GitHub issues GitHub license Python 3.11+ MCP Compatible

📚 Documentation🚀 Quick Start🏛️ OParl API🔧 Configuration🐳 Docker

⚠️ Project Status

This project is currently in development and requires additional validation and testing. While the core functionality is implemented, it has not been thoroughly tested in production environments. Please use with caution and report any issues you encounter.

🎯 Overview

The OParl MCP Server provides AI models and applications with seamless access to OParl parliamentary data APIs through the Model Context Protocol. It enables natural language queries and structured access to parliamentary information systems across multiple implementations.

✨ Features

  • 🔌 MCP Integration: Full Model Context Protocol compliance
  • 🏛️ OParl 1.1 Support: Complete support for all OParl object types
  • 🌐 Multi-Implementation: Works with various OParl implementations
  • 🔐 Authentication: Flexible API key and Bearer token support
  • 📊 Rich Data Access: Parliamentary meetings, documents, organizations, and more
  • 🔍 Advanced Search: Query parameters and filtering capabilities
  • 🐳 Docker Ready: Containerized deployment with Docker Compose
  • 🧪 Comprehensive Testing: Unit tests and integration tests included
  • 📚 Extensive Documentation: Complete API reference and usage guides

🏛️ OParl API

The server provides access to all standard OParl 1.1 object types:

Object Type Description Key Properties
System Root system information oparlVersion, body, created
Body Parliamentary bodies name, shortName, organization
Organization Political parties & groups name, shortName, member
Person Representatives & officials name, givenName, familyName
Meeting Parliamentary sessions name, start, end, location
AgendaItem Meeting topics name, meeting, order
Paper Documents & resolutions name, reference, date
Consultation Public consultations name, paper, start, end
File Attachments & media name, mimeType, accessUrl
Location Meeting venues name, geojson, postalCode

🚀 Quick Start

Prerequisites

  • Python 3.11 or higher
  • pip (Python package manager)

Installation

  1. Clone the repository

    git clone https://github.com/jtwolfe/oparl-mcp-server.git
    cd oparl-mcp-server
  2. Create a virtual environment

    python -m venv venv
    source venv/bin/activate  # On Windows: venv\Scripts\activate
  3. Install dependencies

    pip install -r requirements.txt
  4. Run the server

    python -m oparl_mcp.server

Development Setup

For development, install additional dependencies:

pip install -r requirements-dev.txt

⚙️ Configuration

The server can be configured using environment variables or programmatically:

Environment Variables

export OPARL_BASE_URL="https://api.oparl.org"
export OPARL_API_KEY="your-api-key"  # Optional
export OPARL_TIMEOUT="30.0"
export OPARL_LOG_LEVEL="INFO"
export OPARL_SERVER_NAME="OParl MCP Server"

Programmatic Configuration

from oparl_mcp import OParlConfig, OParlMCPServer

# Create configuration
config = OParlConfig(
    base_url="https://oparl.muenchen.de",
    api_key="your-munich-api-key",
    timeout=60.0,
    server_name="Munich OParl Server"
)

# Create and run server
server = OParlMCPServer(config)
server.run()

🌍 OParl Implementations

The server works with various OParl implementations:

Implementation URL Description
Generic OParl API https://api.oparl.org Standard OParl implementation
Munich City Council https://oparl.muenchen.de Munich parliamentary data
Cologne City Council https://oparl.koeln.de Cologne parliamentary data
Hamburg Parliament https://oparl.hamburg.de Hamburg parliamentary data

Each implementation may have different:

  • Authentication requirements
  • Available data
  • API endpoints
  • Rate limits

🐳 Docker

Using Docker Compose

  1. Create environment file

    cp .env.example .env
    # Edit .env with your configuration
  2. Run with Docker Compose

    docker-compose -f docker/docker-compose.yml up -d

Using Docker directly

# Build the image
docker build -f docker/Dockerfile -t oparl-mcp-server .

# Run the container
docker run -p 8000:8000 \
  -e OPARL_BASE_URL=https://api.oparl.org \
  -e OPARL_API_KEY=your-key \
  oparl-mcp-server

📖 Usage Examples

Basic MCP Client Usage

from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client

async def main():
    async with stdio_client(StdioServerParameters(
        command="python",
        args=["-m", "oparl_mcp.server"]
    )) as (read, write):
        async with ClientSession(read, write) as session:
            # List all meetings
            meetings = await session.list_resources()
            print(f"Found {len(meetings)} resources")

            # Get specific meeting
            meeting = await session.read_resource("oparl_meeting_123")
            print(f"Meeting: {meeting['name']}")

Advanced Configuration

from oparl_mcp import OParlMCPServer, OParlConfig

# Custom configuration for Munich
config = OParlConfig(
    base_url="https://oparl.muenchen.de",
    api_key="your-munich-api-key",
    timeout=45.0,
    server_name="Munich OParl MCP Server"
)

server = OParlMCPServer(config)
info = server.get_server_info()
print(f"Server: {info['name']}")
print(f"Features: {info['features']}")

🧪 Testing

Run the comprehensive test suite:

# Run all tests
pytest

# Run with coverage
pytest --cov=oparl_mcp --cov-report=html

# Run specific test file
pytest tests/test_server.py

# Run integration tests
python test_integration.py

📚 Documentation

Comprehensive documentation is available at https://jtwolfe.github.io/oparl-mcp-server/:

🔧 MCP Components

Resources

  • System Information: Root system data and metadata
  • Body Collections: Lists of parliamentary bodies
  • Meeting Schedules: Upcoming and past meetings
  • Document Collections: Papers and reports
  • Person Profiles: Elected officials and staff

Resource Templates

  • Individual Objects: Specific meetings, people, papers, etc.
  • Parameterized Access: Dynamic resource access with IDs
  • Structured Data: Consistent data format across all objects

Tools

  • Search Operations: Find specific data across the system
  • Filter Operations: Filter data by various criteria
  • Export Operations: Export data in different formats

🏗️ Architecture

The server uses FastMCP to transform the OParl API into MCP-compatible components:

┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
│   AI Model      │    │   MCP Client    │    │   MCP Server    │
│                 │◄──►│                 │◄──►│   (FastMCP)     │
└─────────────────┘    └─────────────────┘    └─────────────────┘
                                                       │
                                                       ▼
                                               ┌─────────────────┐
                                               │   OParl API     │
                                               │   (HTTP/REST)   │
                                               └─────────────────┘

🤝 Contributing

We welcome contributions! Please see our Contributing Guide for details.

Development Setup

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/new-feature
  3. Install development dependencies: pip install -r requirements-dev.txt
  4. Make your changes
  5. Add tests for new functionality
  6. Run the test suite: pytest
  7. Submit a pull request

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments

📞 Support

🔗 Related Projects


Made with ❤️ for open government and AI accessibility

GitHub stars GitHub forks

About

MCP Server of OParl API

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •