Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions src/algorithms/Chalmet.jl
Original file line number Diff line number Diff line change
Expand Up @@ -67,6 +67,10 @@ function minimize_multiobjective!(algorithm::Chalmet, model::Optimizer)
MOI.LessThan(y1[2]),
)
MOI.optimize!(model.inner)
status = MOI.get(model.inner, MOI.TerminationStatus())
if !_is_scalar_status_optimal(status)
return status, nothing
end
x1, y1[1] = _compute_point(model, variables, f1)
MOI.delete(model.inner, y1_constraint)
push!(solutions, SolutionPoint(x1, y1))
Expand All @@ -87,6 +91,10 @@ function minimize_multiobjective!(algorithm::Chalmet, model::Optimizer)
MOI.LessThan(y2[1]),
)
MOI.optimize!(model.inner)
status = MOI.get(model.inner, MOI.TerminationStatus())
if !_is_scalar_status_optimal(status)
return status, nothing
end
x2, y2[2] = _compute_point(model, variables, f2)
MOI.delete(model.inner, y2_constraint)
push!(solutions, SolutionPoint(x2, y2))
Expand Down
30 changes: 30 additions & 0 deletions test/algorithms/Chalmet.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,8 @@ import HiGHS
import MultiObjectiveAlgorithms as MOA
import MultiObjectiveAlgorithms: MOI

include(joinpath(dirname(@__DIR__), "mock_optimizer.jl"))

function run_tests()
for name in names(@__MODULE__; all = true)
if startswith("$name", "test_")
Expand Down Expand Up @@ -253,6 +255,34 @@ function test_single_point()
return
end

function test_solve_failures()
m, n = 2, 10
p1 = [5.0 1 10 8 3 5 3 3 7 2; 10 6 1 6 8 3 2 10 6 1]
p2 = [4.0 6 4 3 1 6 8 2 9 7; 8 8 8 2 4 8 8 1 10 1]
w = [5.0 9 3 5 10 5 7 10 7 8; 4 8 8 6 10 8 10 7 5 1]
b = [34.0, 33.0]
for fail_after in 0:3
model = MOA.Optimizer(mock_optimizer(fail_after))
MOI.set(model, MOA.Algorithm(), MOA.Chalmet())
x_ = MOI.add_variables(model, m * n)
x = reshape(x_, m, n)
MOI.add_constraint.(model, x, MOI.Interval(0.0, 1.0))
f = MOI.Utilities.operate(vcat, Float64, sum(p1 .* x), sum(p2 .* x))
MOI.set(model, MOI.ObjectiveSense(), MOI.MAX_SENSE)
MOI.set(model, MOI.ObjectiveFunction{typeof(f)}(), f)
for i in 1:m
f_i = sum(w[i, j] * x[i, j] for j in 1:n)
MOI.add_constraint(model, f_i, MOI.LessThan(b[i]))
end
for j in 1:n
MOI.add_constraint(model, sum(1.0 .* x[:, j]), MOI.EqualTo(1.0))
end
MOI.optimize!(model)
@test MOI.get(model, MOI.TerminationStatus()) == MOI.NUMERICAL_ERROR
end
return
end

end # module TestChalmet

TestChalmet.run_tests()
30 changes: 30 additions & 0 deletions test/algorithms/Dichotomy.jl
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,8 @@ import Ipopt
import MultiObjectiveAlgorithms as MOA
import MultiObjectiveAlgorithms: MOI

include(joinpath(dirname(@__DIR__), "mock_optimizer.jl"))

function run_tests()
for name in names(@__MODULE__; all = true)
if startswith("$name", "test_")
Expand Down Expand Up @@ -407,6 +409,34 @@ function test_vector_of_variables_objective()
return
end

function test_solve_failures()
m, n = 2, 10
p1 = [5.0 1 10 8 3 5 3 3 7 2; 10 6 1 6 8 3 2 10 6 1]
p2 = [4.0 6 4 3 1 6 8 2 9 7; 8 8 8 2 4 8 8 1 10 1]
w = [5.0 9 3 5 10 5 7 10 7 8; 4 8 8 6 10 8 10 7 5 1]
b = [34.0, 33.0]
for fail_after in 0:3
model = MOA.Optimizer(mock_optimizer(fail_after))
MOI.set(model, MOA.Algorithm(), MOA.Dichotomy())
x_ = MOI.add_variables(model, m * n)
x = reshape(x_, m, n)
MOI.add_constraint.(model, x, MOI.Interval(0.0, 1.0))
f = MOI.Utilities.operate(vcat, Float64, sum(p1 .* x), sum(p2 .* x))
MOI.set(model, MOI.ObjectiveSense(), MOI.MAX_SENSE)
MOI.set(model, MOI.ObjectiveFunction{typeof(f)}(), f)
for i in 1:m
f_i = sum(w[i, j] * x[i, j] for j in 1:n)
MOI.add_constraint(model, f_i, MOI.LessThan(b[i]))
end
for j in 1:n
MOI.add_constraint(model, sum(1.0 .* x[:, j]), MOI.EqualTo(1.0))
end
MOI.optimize!(model)
@test MOI.get(model, MOI.TerminationStatus()) == MOI.NUMERICAL_ERROR
end
return
end

end # module TestDichotomy

TestDichotomy.run_tests()
29 changes: 29 additions & 0 deletions test/algorithms/EpsilonConstraint.jl
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@ import Ipopt
import MultiObjectiveAlgorithms as MOA
import MultiObjectiveAlgorithms: MOI

include(joinpath(dirname(@__DIR__), "mock_optimizer.jl"))
include(joinpath(dirname(@__DIR__), "vOptLib.jl"))

function run_tests()
Expand Down Expand Up @@ -502,6 +503,34 @@ function test_too_many_objectives()
return
end

function test_solve_failures()
m, n = 2, 10
p1 = [5.0 1 10 8 3 5 3 3 7 2; 10 6 1 6 8 3 2 10 6 1]
p2 = [4.0 6 4 3 1 6 8 2 9 7; 8 8 8 2 4 8 8 1 10 1]
w = [5.0 9 3 5 10 5 7 10 7 8; 4 8 8 6 10 8 10 7 5 1]
b = [34.0, 33.0]
for fail_after in 0:3
model = MOA.Optimizer(mock_optimizer(fail_after))
MOI.set(model, MOA.Algorithm(), MOA.EpsilonConstraint())
x_ = MOI.add_variables(model, m * n)
x = reshape(x_, m, n)
MOI.add_constraint.(model, x, MOI.Interval(0.0, 1.0))
f = MOI.Utilities.operate(vcat, Float64, sum(p1 .* x), sum(p2 .* x))
MOI.set(model, MOI.ObjectiveSense(), MOI.MAX_SENSE)
MOI.set(model, MOI.ObjectiveFunction{typeof(f)}(), f)
for i in 1:m
f_i = sum(w[i, j] * x[i, j] for j in 1:n)
MOI.add_constraint(model, f_i, MOI.LessThan(b[i]))
end
for j in 1:n
MOI.add_constraint(model, sum(1.0 .* x[:, j]), MOI.EqualTo(1.0))
end
MOI.optimize!(model)
@test MOI.get(model, MOI.TerminationStatus()) == MOI.NUMERICAL_ERROR
end
return
end

end # module TestEpsilonConstraint

TestEpsilonConstraint.run_tests()
32 changes: 32 additions & 0 deletions test/mock_optimizer.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
# Copyright 2019, Oscar Dowson and contributors
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v.2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at http://mozilla.org/MPL/2.0/.

function _solve_mock(mock)
highs = HiGHS.Optimizer()
MOI.set(highs, MOI.Silent(), true)
index_map = MOI.copy_to(highs, mock)
MOI.optimize!(highs)
x = [index_map[xi] for xi in MOI.get(mock, MOI.ListOfVariableIndices())]
MOI.Utilities.mock_optimize!(
mock,
MOI.get(highs, MOI.TerminationStatus()),
MOI.get(highs, MOI.VariablePrimal(), x),
)
obj = MOI.get(highs, MOI.ObjectiveValue())
MOI.set(mock, MOI.ObjectiveValue(), obj)
return
end

function mock_optimizer(fail_after::Int)
return () -> begin
model = MOI.Utilities.MockOptimizer(MOI.Utilities.Model{Float64}())
MOI.Utilities.set_mock_optimize!(
model,
ntuple(i -> _solve_mock, fail_after)...,
mock -> MOI.Utilities.mock_optimize!(mock, MOI.NUMERICAL_ERROR),
)
return model
end
end
Loading