Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
70 changes: 2 additions & 68 deletions src/KKT/KKT.jl
Original file line number Diff line number Diff line change
Expand Up @@ -125,75 +125,13 @@ function MOI.copy_to(dest::Optimizer, src::MOI.ModelLike)
return MOI.Utilities.default_copy_to(dest, src)
end

function _add_to_system(system, lagrangian, ::SS.FullSpace, ::Bool)
return lagrangian
end

function _add_to_system(
system,
lagrangian,
set::SS.AlgebraicSet,
maximization::Bool,
)
n = SS.nequalities(set)
if iszero(n)
return
end
DynamicPolynomials.@polyvar λ[1:n]
for i in eachindex(λ)
p = SS.equalities(set)[i]
SS.add_equality!(system, p)
if maximization
lagrangian = MA.add_mul!!(lagrangian, λ[i], p)
else
lagrangian = MA.sub_mul!!(lagrangian, λ[i], p)
end
end
return lagrangian
end

function _add_to_system(
system,
lagrangian,
set::SS.BasicSemialgebraicSet,
maximization::Bool,
)
lagrangian = _add_to_system(system, lagrangian, set.V, maximization)
DynamicPolynomials.@polyvar σ[1:PolyJuMP._nineq(set)]
for i in eachindex(σ)
p = SS.inequalities(set)[i]
SS.add_equality!(system, σ[i] * p)
if maximization
lagrangian = MA.add_mul!!(lagrangian, σ[i]^2, p)
else
lagrangian = MA.sub_mul!!(lagrangian, σ[i]^2, p)
end
end
return lagrangian
end

function _square(x::Vector{T}, n) where {T}
return T[(i + n in eachindex(x)) ? x[i] : x[i]^2 for i in eachindex(x)]
end

function _optimize!(model::Optimizer{T}) where {T}
if isnothing(model.options.solver)
system = SS.AlgebraicSet{T,PolyJuMP.PolyType{T}}()
else
I = SS.PolynomialIdeal{T,PolyJuMP.PolyType{T}}()
system = SS.AlgebraicSet(I, model.options.solver)
end
if model.model.objective_sense == MOI.FEASIBILITY_SENSE
lagrangian = MA.Zero()
else
lagrangian = MA.mutable_copy(model.model.objective_function)
end
lagrangian = _add_to_system(
system,
lagrangian,
model.model.set,
model.model.objective_sense == MOI.MAX_SENSE,
)
lagrangian, system =
PolyJuMP.lagrangian_kkt(model.model, model.options.solver)
x = MP.variables(model.model)
if lagrangian isa MA.Zero
model.solutions = [
Expand All @@ -207,10 +145,6 @@ function _optimize!(model::Optimizer{T}) where {T}
model.raw_status = "Lagrangian function is zero so any solution is optimal even if the solver reports a unique solution `0`."
return
end
∇x = MP.differentiate(lagrangian, x)
for p in ∇x
SS.add_equality!(system, p)
end
solutions = nothing
try # We could check `SS.is_zero_dimensional(system)` but that would only work for Gröbner basis based
solutions = collect(system)
Expand Down
91 changes: 91 additions & 0 deletions src/model.jl
Original file line number Diff line number Diff line change
Expand Up @@ -208,6 +208,7 @@ function MOI.supports(
) where {T}
return true
end

function MOI.set(
model::Model{T},
::MOI.ObjectiveFunction,
Expand All @@ -216,3 +217,93 @@ function MOI.set(
model.objective_function = _polynomial(model.variables, func)
return
end

function _add_to_system(_, lagrangian, ::SS.FullSpace, ::Bool)
return lagrangian
end

function _add_to_system(
system,
lagrangian,
set::SS.AlgebraicSet,
maximization::Bool,
)
n = SS.nequalities(set)
if iszero(n)
return
end
DynamicPolynomials.@polyvar λ[1:n]
for i in eachindex(λ)
p = SS.equalities(set)[i]
SS.add_equality!(system, p)
if maximization
lagrangian = MA.add_mul!!(lagrangian, λ[i], p)
else
lagrangian = MA.sub_mul!!(lagrangian, λ[i], p)
end
end
return lagrangian
end

function _add_to_system(
system,
lagrangian,
set::SS.BasicSemialgebraicSet,
maximization::Bool,
)
lagrangian = _add_to_system(system, lagrangian, set.V, maximization)
DynamicPolynomials.@polyvar σ[1:PolyJuMP._nineq(set)]
for i in eachindex(σ)
p = SS.inequalities(set)[i]
SS.add_equality!(system, σ[i] * p)
if maximization
lagrangian = MA.add_mul!!(lagrangian, σ[i]^2, p)
else
lagrangian = MA.sub_mul!!(lagrangian, σ[i]^2, p)
end
end
return lagrangian
end

function lagrangian_kkt(
objective_sense::MOI.OptimizationSense,
objective_function::MP.AbstractPolynomialLike{T},
set;
solver = nothing,
variables = nothing,
) where {T}
if isnothing(solver)
system = SS.AlgebraicSet{T,PolyJuMP.PolyType{T}}()
else
I = SS.PolynomialIdeal{T,PolyJuMP.PolyType{T}}()
system = SS.AlgebraicSet(I, solver)
end
if objective_sense == MOI.FEASIBILITY_SENSE
lagrangian = MA.Zero()
else
lagrangian = MA.mutable_copy(objective_function)
end
lagrangian = _add_to_system(
system,
lagrangian,
set,
objective_sense == MOI.MAX_SENSE,
)
if !(lagrangian isa MA.Zero)
∇x = MP.differentiate(lagrangian, MP.variables(lagrangian))
for p in ∇x
SS.add_equality!(system, p)
end
end
return lagrangian, system
end

function lagrangian_kkt(model::Model{T}, solver = nothing) where {T}
return lagrangian_kkt(
model.objective_sense,
model.objective_function,
model.set;
solver,
variables = MP.variables(model),
)
end