|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Conditional formatting based on other column values" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "markdown", |
| 12 | + "metadata": {}, |
| 13 | + "source": [ |
| 14 | + "## Compound cell values" |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "code", |
| 19 | + "execution_count": null, |
| 20 | + "metadata": {}, |
| 21 | + "outputs": [], |
| 22 | + "source": [ |
| 23 | + "import pandas as pd\n", |
| 24 | + "from ipydatagrid import DataGrid, TextRenderer, VegaExpr\n", |
| 25 | + "\n", |
| 26 | + "df = pd.DataFrame({'column 1': [{'key':11}, ['berry', 'apple', 'cherry']],\n", |
| 27 | + " 'column 2': [['berry', 'berry', 'cherry'], {'key':10}]})\n", |
| 28 | + "\n", |
| 29 | + "renderer = TextRenderer(\n", |
| 30 | + " background_color=VegaExpr(\"cell.value[1] == 'berry' && cell.metadata.data['column 1']['key'] == 11 ? 'limegreen' : 'pink'\"))\n", |
| 31 | + "\n", |
| 32 | + "DataGrid(df, layout={'height':'100px'}, base_column_size=150, default_renderer=renderer)" |
| 33 | + ] |
| 34 | + }, |
| 35 | + { |
| 36 | + "cell_type": "code", |
| 37 | + "execution_count": null, |
| 38 | + "metadata": {}, |
| 39 | + "outputs": [], |
| 40 | + "source": [ |
| 41 | + "import pandas as pd\n", |
| 42 | + "from ipydatagrid import DataGrid, TextRenderer, VegaExpr\n", |
| 43 | + "\n", |
| 44 | + "df = pd.DataFrame({'column 1': [{'key':{'nestedKey':11}}, ['berry', 'apple', 'cherry']],\n", |
| 45 | + " 'column 2': [['berry', 'berry', 'cherry'], {'key':10}]})\n", |
| 46 | + "\n", |
| 47 | + "renderer = TextRenderer(\n", |
| 48 | + " background_color=VegaExpr(\"cell.value[1] == 'berry' && \\\n", |
| 49 | + " cell.metadata.data['column 1']['key']['nestedKey'] == 11 ? 'magenta' : 'dodgerblue'\"))\n", |
| 50 | + "\n", |
| 51 | + "DataGrid(df, layout={'height':'100px'}, base_column_size=150, default_renderer=renderer)" |
| 52 | + ] |
| 53 | + }, |
| 54 | + { |
| 55 | + "cell_type": "code", |
| 56 | + "execution_count": null, |
| 57 | + "metadata": {}, |
| 58 | + "outputs": [], |
| 59 | + "source": [ |
| 60 | + "import pandas as pd\n", |
| 61 | + "from ipydatagrid import DataGrid, TextRenderer, VegaExpr\n", |
| 62 | + "\n", |
| 63 | + "df = pd.DataFrame({'column 1': [['one',['two']], ['berry', 'apple', 'cherry']],\n", |
| 64 | + " 'column 2': [['berry', 'berry', 'cherry'], ['one',['two']]]})\n", |
| 65 | + "\n", |
| 66 | + "renderer = TextRenderer(\n", |
| 67 | + " background_color=VegaExpr(\"cell.value[1] == 'berry' && \\\n", |
| 68 | + " cell.metadata.data['column 1'][1][0] == 'two' ? 'pink' : 'teal'\"))\n", |
| 69 | + "\n", |
| 70 | + "DataGrid(df, layout={'height':'100px'}, base_column_size=150, default_renderer=renderer)" |
| 71 | + ] |
| 72 | + }, |
| 73 | + { |
| 74 | + "cell_type": "code", |
| 75 | + "execution_count": null, |
| 76 | + "metadata": {}, |
| 77 | + "outputs": [], |
| 78 | + "source": [ |
| 79 | + "import pandas as pd\n", |
| 80 | + "from ipydatagrid import DataGrid, TextRenderer, VegaExpr\n", |
| 81 | + "\n", |
| 82 | + "df = pd.DataFrame({'column 1': [['one',['two']], ['berry', 'apple', 'cherry']],\n", |
| 83 | + " 'column 2': [['berry', 'berry', 'cherry'], ['one',['two']]]})\n", |
| 84 | + "\n", |
| 85 | + "renderer = TextRenderer(\n", |
| 86 | + " background_color=VegaExpr(\"cell.value[1] == 'berry' ? 'pink' : 'teal'\"))\n", |
| 87 | + "\n", |
| 88 | + "DataGrid(df, layout={'height':'100px'}, base_column_size=150, default_renderer=renderer)" |
| 89 | + ] |
| 90 | + }, |
| 91 | + { |
| 92 | + "cell_type": "markdown", |
| 93 | + "metadata": {}, |
| 94 | + "source": [ |
| 95 | + "## Normal column names" |
| 96 | + ] |
| 97 | + }, |
| 98 | + { |
| 99 | + "cell_type": "code", |
| 100 | + "execution_count": null, |
| 101 | + "metadata": { |
| 102 | + "scrolled": false |
| 103 | + }, |
| 104 | + "outputs": [], |
| 105 | + "source": [ |
| 106 | + "# Imports\n", |
| 107 | + "import json\n", |
| 108 | + "import numpy as np\n", |
| 109 | + "import pandas as pd\n", |
| 110 | + "from bqplot import DateScale, ColorScale\n", |
| 111 | + "from py2vega.functions.type_coercing import toDate\n", |
| 112 | + "from py2vega.functions.date_time import datetime\n", |
| 113 | + "from ipydatagrid import Expr, DataGrid, TextRenderer\n", |
| 114 | + "\n", |
| 115 | + "# Random data\n", |
| 116 | + "n = 10\n", |
| 117 | + "np.random.seed(0)\n", |
| 118 | + "df = pd.DataFrame({\n", |
| 119 | + " 'Column 0': np.random.randn(n),\n", |
| 120 | + " 'Column 1': np.random.randn(n),\n", |
| 121 | + " 'Column 2': np.random.randn(n),\n", |
| 122 | + "})\n", |
| 123 | + "\n", |
| 124 | + "# Formatting the values in column 1 based on the value of the silbing row in column 2\n", |
| 125 | + "def format_based_on_other_column(cell):\n", |
| 126 | + " return 'green' if cell.metadata.data['Column 2'] > 0.0 else 'yellow'\n", |
| 127 | + "\n", |
| 128 | + "column1_formatting = TextRenderer(\n", |
| 129 | + " text_color='black',\n", |
| 130 | + " background_color=Expr(format_based_on_other_column),\n", |
| 131 | + ")\n", |
| 132 | + "\n", |
| 133 | + "renderers = {\n", |
| 134 | + " 'Column 1': column1_formatting,\n", |
| 135 | + "}\n", |
| 136 | + "\n", |
| 137 | + "grid = DataGrid(df, base_row_size=30, base_column_size=300, renderers=renderers, \n", |
| 138 | + " layout={'height':'350px'})\n", |
| 139 | + "grid" |
| 140 | + ] |
| 141 | + }, |
| 142 | + { |
| 143 | + "cell_type": "markdown", |
| 144 | + "metadata": {}, |
| 145 | + "source": [ |
| 146 | + "## Example with nested columns" |
| 147 | + ] |
| 148 | + }, |
| 149 | + { |
| 150 | + "cell_type": "code", |
| 151 | + "execution_count": null, |
| 152 | + "metadata": {}, |
| 153 | + "outputs": [], |
| 154 | + "source": [ |
| 155 | + "import ipydatagrid as ipg\n", |
| 156 | + "import pandas as pd\n", |
| 157 | + "import numpy as np\n", |
| 158 | + "\n", |
| 159 | + "top_level = ['Value Factors', 'Value Factors', 'Momentum Factors', 'Momentum Factors']\n", |
| 160 | + "bottom_level = ['Factor A', 'Factor B', 'Factor C', 'Factor D']\n", |
| 161 | + "\n", |
| 162 | + "nested_df = pd.DataFrame(np.random.randn(4,4).round(2),\n", |
| 163 | + " columns=pd.MultiIndex.from_arrays([top_level, bottom_level]),\n", |
| 164 | + " index=pd.Index(['Security {}'.format(x) for x in ['A', 'B', 'C', 'D']], name='Ticker'))\n", |
| 165 | + "\n", |
| 166 | + "# Formatting Factor B rows based on their siblings in the Factor C column\n", |
| 167 | + "def format_based_on_other_column(cell):\n", |
| 168 | + " return 'green' if cell.value > -0 and cell.metadata.data[\"('Value Factors', 'Factor B')\"] > 0.0 else 'yellow'\n", |
| 169 | + "\n", |
| 170 | + "nested_grid = ipg.DataGrid(nested_df,\n", |
| 171 | + " base_column_size=90,\n", |
| 172 | + " layout={'height':'140px'},\n", |
| 173 | + " default_renderer=ipg.TextRenderer(\n", |
| 174 | + " horizontal_alignment='right', \n", |
| 175 | + " background_color=Expr(format_based_on_other_column)))\n", |
| 176 | + "\n", |
| 177 | + "nested_grid" |
| 178 | + ] |
| 179 | + }, |
| 180 | + { |
| 181 | + "cell_type": "code", |
| 182 | + "execution_count": null, |
| 183 | + "metadata": {}, |
| 184 | + "outputs": [], |
| 185 | + "source": [ |
| 186 | + "def format_based_on_other_column(cell):\n", |
| 187 | + " return 'green' if cell.column == 0 and cell.metadata.data['Signal'] == \"Buy\" else 'red'\n", |
| 188 | + "\n", |
| 189 | + "\n", |
| 190 | + "signal_column_formatting = TextRenderer(\n", |
| 191 | + " text_color='white',\n", |
| 192 | + " background_color=Expr(format_based_on_other_column),\n", |
| 193 | + ")\n", |
| 194 | + "\n", |
| 195 | + "renderers = {\n", |
| 196 | + " 'Stock': signal_column_formatting,\n", |
| 197 | + "}\n", |
| 198 | + "\n", |
| 199 | + "grid = DataGrid(pd.DataFrame({\"Stock\":'A B C D'.split(), \"Signal\":['Buy', 'Sell', 'Buy', 'Sell']}), \n", |
| 200 | + " base_row_size=30, base_column_size=300, renderers=renderers, layout={'height':'150px'})\n", |
| 201 | + "grid" |
| 202 | + ] |
| 203 | + }, |
| 204 | + { |
| 205 | + "cell_type": "markdown", |
| 206 | + "metadata": {}, |
| 207 | + "source": [ |
| 208 | + "## Comparing dates" |
| 209 | + ] |
| 210 | + }, |
| 211 | + { |
| 212 | + "cell_type": "code", |
| 213 | + "execution_count": null, |
| 214 | + "metadata": {}, |
| 215 | + "outputs": [], |
| 216 | + "source": [ |
| 217 | + "import json\n", |
| 218 | + "\n", |
| 219 | + "import numpy as np\n", |
| 220 | + "import pandas as pd\n", |
| 221 | + "from bqplot import DateScale, ColorScale\n", |
| 222 | + "from py2vega.functions.type_coercing import toDate\n", |
| 223 | + "from py2vega.functions.date_time import datetime\n", |
| 224 | + "\n", |
| 225 | + "from ipydatagrid import Expr, DataGrid, TextRenderer, BarRenderer\n", |
| 226 | + "\n", |
| 227 | + "n = 10\n", |
| 228 | + "np.random.seed(0)\n", |
| 229 | + "\n", |
| 230 | + "def format_based_on_date(cell):\n", |
| 231 | + " return 'magenta' if cell.column == 0 and cell.metadata.data['Dates'] >= '2020-10-21' else 'yellow'\n", |
| 232 | + "\n", |
| 233 | + "df = pd.DataFrame({\n", |
| 234 | + " 'Value 1': np.random.randn(n),\n", |
| 235 | + " 'Value 2': np.random.randn(n),\n", |
| 236 | + " 'Dates': pd.date_range(end=pd.Timestamp('2020-10-25'), periods=n)\n", |
| 237 | + "})\n", |
| 238 | + "\n", |
| 239 | + "text_renderer = TextRenderer(\n", |
| 240 | + " text_color='black',\n", |
| 241 | + " background_color=Expr(format_based_on_date)\n", |
| 242 | + ")\n", |
| 243 | + "\n", |
| 244 | + "def bar_color(cell):\n", |
| 245 | + " date = toDate(cell.value)\n", |
| 246 | + " return 'green' if date > datetime('2000') else 'red'\n", |
| 247 | + "\n", |
| 248 | + "\n", |
| 249 | + "renderers = {\n", |
| 250 | + " 'Value 1': text_renderer,\n", |
| 251 | + " 'Dates': BarRenderer(\n", |
| 252 | + " bar_value=DateScale(min=df['Dates'][0], max=df['Dates'][n-1]),\n", |
| 253 | + " bar_color=Expr(bar_color),\n", |
| 254 | + " format='%Y/%m/%d',\n", |
| 255 | + " format_type='time'\n", |
| 256 | + " ),\n", |
| 257 | + "}\n", |
| 258 | + "\n", |
| 259 | + "grid = DataGrid(df, base_row_size=30, base_column_size=300, renderers=renderers, layout={'height':'350px'})\n", |
| 260 | + "grid" |
| 261 | + ] |
| 262 | + } |
| 263 | + ], |
| 264 | + "metadata": { |
| 265 | + "kernelspec": { |
| 266 | + "display_name": "Python 3", |
| 267 | + "language": "python", |
| 268 | + "name": "python3" |
| 269 | + }, |
| 270 | + "language_info": { |
| 271 | + "codemirror_mode": { |
| 272 | + "name": "ipython", |
| 273 | + "version": 3 |
| 274 | + }, |
| 275 | + "file_extension": ".py", |
| 276 | + "mimetype": "text/x-python", |
| 277 | + "name": "python", |
| 278 | + "nbconvert_exporter": "python", |
| 279 | + "pygments_lexer": "ipython3", |
| 280 | + "version": "3.8.5" |
| 281 | + } |
| 282 | + }, |
| 283 | + "nbformat": 4, |
| 284 | + "nbformat_minor": 4 |
| 285 | +} |
0 commit comments