- Built with vllm pre-generated concept sets
- Configs for different models training
- Shared final layer training class
- incroporate ANEC tool
git clone https://github.com/kaylaisher/cbm_library.git
cd cbm_library
bash requirements.sh
cd ..
python -m cbm_library.scripts.lf_cbm_train <dataset> \
--save_dir saved_models \
cd ..
python -m cbm_library.scripts.vlg_cbm_train <dataset_name> \
--annotation_dir /kayla/Annotations \
--save_dir saved_models
cd evaluation/ANEC-evaluator
pip install -e .
get_anec --load_path <path_to_your_data_folder> --output_dir <path_to_save_results>
- Label-Free CBM (ICLR 2023) — official code: https://github.com/Trustworthy-ML-Lab/Label-free-CBM
- VLG-CBM (NeurIPS 2024) — official code & docs: https://github.com/Trustworthy-ML-Lab/VLG-CBM
- ANEC-evaluator — standalone tool to compute ANEC: https://github.com/windymount/ANEC-evaluator