@@ -4,7 +4,7 @@ require(tibble)
44
55# # -- For two variables: ------------------------------------
66
7- AICc.table.2var <- function (sig.vars , control.var.char = NULL , c.var = 0 , matrix.char , perm = 999 , type = " AICc" , method = " bray" ) {
7+ AICc.table.2var <- function (sig.vars , control.var.char = NULL , c.var = 0 , matrix.char , perm , type = " AICc" , method = " bray" ) {
88
99 varcomb.2.AICc <- tibble(variables = rep(" var.name" , choose(length(sig.vars ),2 )),
1010 AICc.values = rep(0 ),
@@ -13,7 +13,7 @@ AICc.table.2var <- function(sig.vars, control.var.char = NULL, c.var = 0, matrix
1313 `Var Explnd` = rep(0 ),
1414 Model = rep(" model" ))
1515
16- if (is.character(control.var.char ) == TRUE & c.var == 0 ) {c.var = 1 }
16+ if (is.character(control.var.char ) == TRUE & c.var == 0 ) {c.var = length( control.var.char ) }
1717
1818 combo.list <- combn(x = sig.vars , m = 2 , simplify = FALSE )
1919
@@ -52,11 +52,12 @@ AICc.table.2var <- function(sig.vars, control.var.char = NULL, c.var = 0, matrix
5252
5353 varcomb.2.AICc $ `Delta AICc` <- varcomb.2.AICc $ AICc.values -
5454 min(varcomb.2.AICc $ AICc.values )
55- varcomb.2.AICc $ `Relative Likelihood` <- exp((min( varcomb.2.AICc $ AICc.values ) -
56- varcomb.2.AICc $ AICc.values )/ 2 )
55+ varcomb.2.AICc $ `Relative Likelihood` <-
56+ exp( - .5 * ( varcomb.2.AICc $ AICc.values - min( varcomb.2.AICc $ AICc.values )) )
5757
5858 # Relative likelihood compared with best model; see
5959 # https://en.wikipedia.org/wiki/Likelihood_function
60+ # https://www.rdocumentation.org/packages/qpcR/versions/1.4-1/topics/akaike.weights
6061
6162
6263return (varcomb.2.AICc )
@@ -68,7 +69,7 @@ return(varcomb.2.AICc)
6869# # -- For N variables: ---------------------------------------------------
6970
7071
71- AICc.table.Nvar <- function (sig.vars , control.var.char = NULL , c.var = 0 , matrix.char , perm = 999 , n.var = 1 , composite = FALSE , type = " AICc" , method = " bray" ) {
72+ AICc.table.Nvar <- function (sig.vars , control.var.char = NULL , c.var = 0 , matrix.char , perm , n.var = 1 , composite = FALSE , type = " AICc" , method = " bray" ) {
7273
7374 if (n.var > length(sig.vars )) { stop(" n.var greater than number of significant variables" )}
7475
@@ -123,8 +124,8 @@ AICc.table.Nvar <- function(sig.vars, control.var.char = NULL, c.var = 0, matrix
123124if (composite == FALSE ) {
124125 varcomb.N.AICc $ `Delta AICc` <- varcomb.N.AICc $ AICc.values -
125126 min(varcomb.N.AICc $ AICc.values )
126- varcomb.N .AICc $ `Relative Likelihood` <- exp((min( varcomb.N.AICc $ AICc.values ) -
127- varcomb.N .AICc $ AICc.values )/ 2 )
127+ varcomb.2 .AICc $ `Relative Likelihood` <-
128+ exp( - .5 * ( varcomb.2.AICc $ AICc.values - min( varcomb.2 .AICc $ AICc.values )) )
128129 }
129130
130131
@@ -149,7 +150,7 @@ AICc.table.all <- function(sig.vars, control.var.char = NULL, matrix.char, perm
149150
150151 temp <- AICc.table.Nvar(sig.vars = control.var.char , control.var.char = NULL ,
151152 matrix.char = matrix.char , n.var = 1 , composite = TRUE ,
152- type = type , method = method )
153+ type = type , method = method , perm = perm )
153154
154155 varcomb.all <- rbind(varcomb.all , temp )
155156
@@ -161,7 +162,7 @@ AICc.table.all <- function(sig.vars, control.var.char = NULL, matrix.char, perm
161162
162163 temp <- AICc.table.Nvar(sig.vars = sig.vars , control.var.char = control.var.char ,
163164 matrix.char = matrix.char , n.var = i , composite = TRUE ,
164- type = type , method = method )
165+ type = type , method = method , perm = perm )
165166
166167 varcomb.all <- rbind(varcomb.all , temp )
167168
0 commit comments