Skip to content

Fix Discretization layer graph mode bug #21514

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 14 commits into
base: master
Choose a base branch
from
Open
20 changes: 15 additions & 5 deletions keras/src/layers/preprocessing/discretization.py
Original file line number Diff line number Diff line change
Expand Up @@ -95,9 +95,6 @@ def __init__(
dtype=None,
name=None,
):
if dtype is None:
dtype = "int64" if output_mode == "int" else backend.floatx()

super().__init__(name=name, dtype=dtype)

if sparse and not backend.SUPPORTS_SPARSE_TENSORS:
Expand Down Expand Up @@ -155,6 +152,13 @@ def __init__(
def input_dtype(self):
return backend.floatx()

@property
def compute_dtype(self):
if self.output_mode == "int":
return "int64"
else:
return backend.floatx()

def adapt(self, data, steps=None):
"""Computes bin boundaries from quantiles in a input dataset.

Expand Down Expand Up @@ -213,7 +217,10 @@ def reset_state(self):
self.summary = np.array([[], []], dtype="float32")

def compute_output_spec(self, inputs):
return backend.KerasTensor(shape=inputs.shape, dtype=self.compute_dtype)
output_dtype = (
"int64" if self.output_mode == "int" else self.compute_dtype
)
return backend.KerasTensor(shape=inputs.shape, dtype=output_dtype)

def load_own_variables(self, store):
if len(store) == 1:
Expand All @@ -230,11 +237,14 @@ def call(self, inputs):
)

indices = self.backend.numpy.digitize(inputs, self.bin_boundaries)
output_dtype = (
"int64" if self.output_mode == "int" else self.compute_dtype
)
return numerical_utils.encode_categorical_inputs(
indices,
output_mode=self.output_mode,
depth=len(self.bin_boundaries) + 1,
dtype=self.compute_dtype,
dtype=output_dtype,
sparse=self.sparse,
backend_module=self.backend,
)
Expand Down
21 changes: 21 additions & 0 deletions keras/src/layers/preprocessing/discretization_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -205,3 +205,24 @@ def test_call_before_adapt_raises(self):
layer = layers.Discretization(num_bins=3)
with self.assertRaisesRegex(ValueError, "You need .* call .*adapt"):
layer([[0.1, 0.8, 0.9]])

def test_model_call_vs_predict_consistency(self):
"""Test that model(input) and model.predict(input) produce consistent outputs.""" # noqa: E501
# Test with int output mode
layer = layers.Discretization(
bin_boundaries=[-0.5, 0, 0.1, 0.2, 3],
output_mode="int",
)
x = np.array([[0.0, 0.15, 0.21, 0.3], [0.0, 0.17, 0.451, 7.8]])

# Create model
inputs = layers.Input(shape=(4,), dtype="float32")
outputs = layer(inputs)
model = models.Model(inputs=inputs, outputs=outputs)

# Test both execution modes
model_call_output = model(x)
predict_output = model.predict(x)

# Check consistency
self.assertAllClose(model_call_output, predict_output)
Loading