Skip to content

[OpenVINO backend] Support numpy.logaddexp #21522

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 0 additions & 2 deletions keras/src/backend/openvino/excluded_concrete_tests.txt
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,6 @@ NumpyDtypeTest::test_isinf
NumpyDtypeTest::test_isnan
NumpyDtypeTest::test_isneginf
NumpyDtypeTest::test_linspace
NumpyDtypeTest::test_logaddexp
NumpyDtypeTest::test_logspace
NumpyDtypeTest::test_matmul_
NumpyDtypeTest::test_max
Expand Down Expand Up @@ -96,7 +95,6 @@ NumpyOneInputOpsCorrectnessTest::test_imag
NumpyOneInputOpsCorrectnessTest::test_isfinite
NumpyOneInputOpsCorrectnessTest::test_isinf
NumpyOneInputOpsCorrectnessTest::test_isneginf
NumpyOneInputOpsCorrectnessTest::test_logaddexp
NumpyOneInputOpsCorrectnessTest::test_max
NumpyOneInputOpsCorrectnessTest::test_mean
NumpyOneInputOpsCorrectnessTest::test_median
Expand Down
50 changes: 47 additions & 3 deletions keras/src/backend/openvino/numpy.py
Original file line number Diff line number Diff line change
Expand Up @@ -1031,9 +1031,53 @@ def log2(x):


def logaddexp(x1, x2):
raise NotImplementedError(
"`logaddexp` is not supported with openvino backend"
)
element_type = None
if isinstance(x1, OpenVINOKerasTensor):
element_type = x1.output.get_element_type()
if isinstance(x2, OpenVINOKerasTensor):
element_type = x2.output.get_element_type()
x1 = get_ov_output(x1, element_type)
x2 = get_ov_output(x2, element_type)
x1, x2 = _align_operand_types(x1, x2, "logaddexp()")

if x1.element_type.is_integral() or x2.element_type.is_integral():
float_dtype = OPENVINO_DTYPES[config.floatx()]
if x1.element_type.is_integral():
x1 = ov_opset.convert(x1, float_dtype)
if x2.element_type.is_integral():
x2 = ov_opset.convert(x2, float_dtype)

# Get the output nodes properly
max_val_node = ov_opset.maximum(x1, x2)
max_val = max_val_node.output(0)

# Compute absolute difference
sub_node = ov_opset.subtract(x1, x2)
abs_diff_node = ov_opset.abs(sub_node.output(0))
abs_diff = abs_diff_node.output(0)

# Compute negative absolute difference and its exponential
neg_abs_diff_node = ov_opset.negative(abs_diff)
neg_abs_diff = neg_abs_diff_node.output(0)
exp_neg_abs_node = ov_opset.exp(neg_abs_diff)
exp_neg_abs = exp_neg_abs_node.output(0)

# Get the element type from the node, not the output
element_type = exp_neg_abs_node.get_element_type()
one_node = ov_opset.constant(1, element_type)
one = one_node.output(0)

# Compute log term
one_plus_exp_node = ov_opset.add(one, exp_neg_abs)
one_plus_exp = one_plus_exp_node.output(0)
log_term_node = ov_opset.log(one_plus_exp)
log_term = log_term_node.output(0)

# Final result
result_node = ov_opset.add(max_val, log_term)
result = result_node.output(0)

return OpenVINOKerasTensor(result)


def logical_and(x1, x2):
Expand Down