Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
55 changes: 38 additions & 17 deletions wanvideo/schedulers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,23 +31,29 @@
"rcm"
]

def _apply_custom_sigmas(sample_scheduler, sigmas, device):
sample_scheduler.sigmas = sigmas.to(device)
sample_scheduler.timesteps = (sample_scheduler.sigmas[:-1] * 1000).to(torch.int64).to(device)
sample_scheduler.num_inference_steps = len(sample_scheduler.timesteps)

def get_scheduler(scheduler, steps, start_step, end_step, shift, device, transformer_dim=5120, flowedit_args=None, denoise_strength=1.0, sigmas=None, log_timesteps=False, **kwargs):
timesteps = None
if 'unipc' in scheduler:
sample_scheduler = FlowUniPCMultistepScheduler(shift=shift)
if sigmas is None:
sample_scheduler.set_timesteps(steps, device=device, shift=shift, use_beta_sigmas=('beta' in scheduler))
else:
sample_scheduler.sigmas = sigmas.to(device)
sample_scheduler.timesteps = (sample_scheduler.sigmas[:-1] * 1000).to(torch.int64).to(device)
sample_scheduler.num_inference_steps = len(sample_scheduler.timesteps)
_apply_custom_sigmas(sample_scheduler, sigmas, device)

elif scheduler in ['euler/beta', 'euler']:
sample_scheduler = FlowMatchEulerDiscreteScheduler(shift=shift, use_beta_sigmas=(scheduler == 'euler/beta'))
if flowedit_args: #seems to work better
timesteps, _ = retrieve_timesteps(sample_scheduler, device=device, sigmas=get_sampling_sigmas(steps, shift))
if sigmas is None:
if flowedit_args: #seems to work better
timesteps, _ = retrieve_timesteps(sample_scheduler, device=device, sigmas=get_sampling_sigmas(steps, shift))
else:
sample_scheduler.set_timesteps(steps, device=device)
else:
sample_scheduler.set_timesteps(steps, device=device, sigmas=sigmas[:-1].tolist() if sigmas is not None else None)
_apply_custom_sigmas(sample_scheduler, sigmas, device)
elif 'dpm' in scheduler:
if 'sde' in scheduler:
algorithm_type = "sde-dpmsolver++"
Expand All @@ -57,16 +63,20 @@ def get_scheduler(scheduler, steps, start_step, end_step, shift, device, transfo
if sigmas is None:
sample_scheduler.set_timesteps(steps, device=device, use_beta_sigmas=('beta' in scheduler))
else:
sample_scheduler.sigmas = sigmas.to(device)
sample_scheduler.timesteps = (sample_scheduler.sigmas[:-1] * 1000).to(torch.int64).to(device)
sample_scheduler.num_inference_steps = len(sample_scheduler.timesteps)
_apply_custom_sigmas(sample_scheduler, sigmas, device)
elif scheduler == 'deis':
sample_scheduler = DEISMultistepScheduler(use_flow_sigmas=True, prediction_type="flow_prediction", flow_shift=shift)
sample_scheduler.set_timesteps(steps, device=device)
sample_scheduler.sigmas[-1] = 1e-6
if sigmas is None:
sample_scheduler.set_timesteps(steps, device=device)
sample_scheduler.sigmas[-1] = 1e-6
else:
_apply_custom_sigmas(sample_scheduler, sigmas, device)
elif 'lcm' in scheduler:
sample_scheduler = FlowMatchLCMScheduler(shift=shift, use_beta_sigmas=(scheduler == 'lcm/beta'))
sample_scheduler.set_timesteps(steps, device=device, sigmas=sigmas[:-1].tolist() if sigmas is not None else None)
if sigmas is None:
sample_scheduler.set_timesteps(steps, device=device)
else:
_apply_custom_sigmas(sample_scheduler, sigmas, device)
elif 'flowmatch_causvid' in scheduler:
if sigmas is not None:
raise NotImplementedError("This scheduler does not support custom sigmas")
Expand Down Expand Up @@ -99,17 +109,28 @@ def get_scheduler(scheduler, steps, start_step, end_step, shift, device, transfo
sample_scheduler.sigmas = torch.cat([sample_scheduler.timesteps / 1000, torch.tensor([0.0], device=device)])
elif 'flowmatch_pusa' in scheduler:
sample_scheduler = FlowMatchSchedulerPusa(shift=shift, sigma_min=0.0, extra_one_step=True)
sample_scheduler.set_timesteps(steps+1, denoising_strength=denoise_strength, shift=shift,
sigmas=sigmas[:-1].tolist() if sigmas is not None else None)
if sigmas is None:
sample_scheduler.set_timesteps(steps+1, denoising_strength=denoise_strength, shift=shift)
else:
_apply_custom_sigmas(sample_scheduler, sigmas, device)
elif scheduler == 'res_multistep':
sample_scheduler = FlowMatchSchedulerResMultistep(shift=shift)
sample_scheduler.set_timesteps(steps, denoising_strength=denoise_strength, sigmas=sigmas[:-1].tolist() if sigmas is not None else None)
if sigmas is None:
sample_scheduler.set_timesteps(steps, denoising_strength=denoise_strength)
else:
_apply_custom_sigmas(sample_scheduler, sigmas, device)
elif "sa_ode_stable" in scheduler:
sample_scheduler = FlowMatchSAODEStableScheduler(shift=shift, **kwargs)
sample_scheduler.set_timesteps(steps, device=device, sigmas=sigmas[:-1].tolist() if sigmas is not None else None)
if sigmas is None:
sample_scheduler.set_timesteps(steps, device=device)
else:
_apply_custom_sigmas(sample_scheduler, sigmas, device)
elif 'rcm' in scheduler:
sample_scheduler = rCMFlowMatchScheduler()
sample_scheduler.set_timesteps(steps, sigma_max=120)
if sigmas is None:
sample_scheduler.set_timesteps(steps, sigma_max=120)
else:
_apply_custom_sigmas(sample_scheduler, sigmas, device)

if timesteps is None:
timesteps = sample_scheduler.timesteps
Expand Down