This repository contains a small, opinionated setup to run local AI-assisted development workflows on a laptop like:
- Lenovo ThinkBook 16 G7 IML
- Intel® Core™ Ultra 7 155H
- Intel Arc integrated GPU (Meteor Lake-P)
- Intel Meteor Lake NPU (Intel AI Boost)
- Ubuntu Linux
The goal is to:
- Use Ollama with Vulkan (Intel Arc GPU) when possible.
- Expose simple, well-documented shell helpers (
ke_*) that coding agents (Claude Code CLI, Gemini CLI, Codex CLI, GitHub Copilot, etc.) can rely on. - Provide an
AGENT.mdso agents understand your environment and tools. - Offer examples for:
- Local LLM via Ollama
- Docker + Vulkan (Intel Arc)
- LM Studio GPU usage
- CLI coding agents orchestration
.
├── .ke-dev-env.example # Shell helpers and environment variables
├── AGENT.md # Description of the environment for AI agents
├── README.md # This file
└── examples
├── 01-ollama-local-code
│ └── README.md # Using ke_local_code + Ollama
├── 02-docker-vulkan
│ ├── Dockerfile # Minimal Vulkan-capable base image
│ └── README.md # How to run containers with GPU
├── 03-lmstudio
│ └── README.md # LM Studio config for Intel Arc
└── 04-agents-cli
└── README.md # Claude Code, Gemini CLI, Codex + ke_* helpers
On the host (Ubuntu):
- Git
- Bash or Zsh
- Docker + Docker Compose
- Ollama (>= 0.13.x)
- Vulkan runtime:
mesa-vulkan-driversvulkan-tools
- Optionally:
- LM Studio
- Claude Code CLI
- Gemini CLI
- codex-cli / GitHub Copilot
Install Vulkan basics on Ubuntu:
sudo apt update
sudo apt install mesa-vulkan-drivers vulkan-tools
vulkaninfo | grep -i 'deviceName' -m 5You should see an entry like:
deviceName : Intel(R) Arc Graphics
git clone https://github.com/your-user/ke-local-dev-env.git
cd ke-local-dev-env
cp .ke-dev-env.example ~/.ke-dev-envNow edit ~/.ke-dev-env and adjust at least:
-
OLLAMA_MODELS
The directory where your Ollama models live.
Example:/media/youruser/DATA/ollama-models -
Any project-specific behaviour inside:
ke_run_testske_run_app
For bash:
echo 'source ~/.ke-dev-env' >> ~/.bashrc
source ~/.bashrcFor zsh:
echo 'source ~/.ke-dev-env' >> ~/.zshrc
source ~/.zshrcIf you downloaded a .zip of this repository instead of cloning via Git:
-
Unzip and enter the directory:
unzip ke-local-dev-env.zip cd ke-local-dev-env -
Copy the example env file:
cp .ke-dev-env.example ~/.ke-dev-env -
Edit
~/.ke-dev-env:- Set
OLLAMA_MODELSto your actual models directory (for example/media/youruser/DATA/ollama-models). - Adjust
ke_run_testsandke_run_appto match your usual project commands if needed. - Optionally change the default model used by
ke_local_code.
- Set
-
Hook it into your shell:
For bash:
echo 'source ~/.ke-dev-env' >> ~/.bashrc source ~/.bashrc
For zsh:
echo 'source ~/.ke-dev-env' >> ~/.zshrc source ~/.zshrc
-
Open a new terminal and test:
ke_hw_info # Show CPU / GPU / NPU summary ke_run_tests # Run tests in a project with pytest ke_run_app # Run your Docker Compose app ke_local_code "Explain what this environment does."
If these commands work without errors, your local environment is ready for your coding agents.
Once the shell has sourced ~/.ke-dev-env, you should have:
ke_hw_info # Show basic CPU/GPU/NPU info
ke_local_code # Use a local code-focused LLM via Ollama
ke_run_tests # Run your test suite (pytest by default)
ke_run_app # Run your app via docker composeStart the Ollama server:
export OLLAMA_VULKAN=1
ollama serveCheck the logs: you should see a line with a non-zero "total vram" value, indicating the GPU backend is active.
Then, in another terminal:
ke_local_code "Write a small Python function that adds two numbers and explain it."You can customize the default model used by ke_local_code in ~/.ke-dev-env.
Check the examples folder for concrete, documented scenarios:
-
Ollama local code:
How to useke_local_codeand small code models (e.g.codellama:7b-code) in a local loop. -
Docker + Vulkan:
How to run containers that see your Intel Arc GPU through/dev/driand Vulkan. -
LM Studio:
How to configure LM Studio to use Vulkan on Intel Arc, including suggestions for model sizes and quantization. -
CLI coding agents:
How to integrate Claude Code, Gemini CLI, and codex-cli withke_*helpers so they act as “brains in the cloud, hands on your machine”.
If you publish this as a template, consider creating branches or variants:
nvidia-cudaamd-rocmcpu-onlyintel-npu-openvino
Each variant can keep the same AGENT.md shape but adapt:
- Hardware description
- How to enable GPU/NPU
- Default models and quantization
This project is licensed under the MIT License. See LICENSE for details.
This repository was generated using ChatGPT 5.1 Extended Thinking based on a laptop-class configuration with an Intel® Core™ Ultra 7 155H, Intel Arc integrated GPU (Meteor Lake-P), Intel NPU (AI Boost), and Ubuntu Linux.