A tool for scanning and analyzing technology blog posts to identify relevant content for CTOs and technology leaders.
- Scans multiple technology blogs and news sources
- Uses AI to analyze and rate content relevance
- Generates PDF reports with summaries and ratings
- Web interface for viewing and managing scans
- Configurable rating system (1-10 scale)
- Support for both OpenAI and local Ollama models
Articles are rated on a scale of 1-10 based on their relevance to CTOs and technology leaders:
- 1-3: Low relevance
- 4-6: Medium relevance
- 7-10: High relevance
- Clone the repository:
git clone https://github.com/yourusername/cto_signal_scanner.git
cd cto_signal_scanner
- Create and activate a virtual environment:
python -m venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
- Install dependencies:
pip install -r requirements.txt
pip install -e .
- Create a
.env
file with your configuration:
OPENAI_API_KEY=your_api_key_here
GPT_MODEL=gpt-3.5-turbo
- Start the web server:
python run_web.py
- Open your browser and navigate to
http://localhost:5000
- Run a scan:
python run_scan.py
- Generate a report:
python run_report.py
OPENAI_API_KEY
: Your OpenAI API keyGPT_MODEL
: The GPT model to use (default: gpt-3.5-turbo)USE_OLLAMA
: Set to 'true' to use local Ollama modelOLLAMA_BASE_URL
: URL for Ollama API (default: http://localhost:11434/v1)OLLAMA_MODEL
: Model to use with Ollama (default: qwen2:7b)
Edit cto_signal_scanner/config/blog_sources.py
to add or modify blog sources.
- Fork the repository
- Create a feature branch
- Commit your changes
- Push to the branch
- Create a Pull Request
This project is licensed under the MIT License - see the LICENSE file for details.