Releases: kozistr/pytorch_optimizer
Releases · kozistr/pytorch_optimizer
pytorch-optimizer v2.9.0
Change Log
Feature
- Implement AdaMax optimizer, #148
- A variant of Adam based on the infinity norm
- Implement Gravity optimizer, #151
- Implement AdaSmooth optimizer, #153
- Implement SRMM optimizer, #154
- Implement AvaGrad optimizer, #155
- Implement AdaShift optimizer, #157
- Upgrade to D-Adaptation v3, #158, #159
- Implement AdaDelta optimizer, #160
Docs
Refactor
- Refactor validation logic, #149, #150
- Rename
amsbound,amsgradterms intoams_bound, #149 - Return gradient instead of the parameter, AGC. #149
- Refactor duplicates (e.g. rectified step size, AMSBound, AdamD, AdaNorm, weight decay) into re-usable functions, #150
- Move
pytorch_optimizer.experimentalunderpytorch_optimizer.*.experimental
Diff
pytorch-optimizer v2.8.0
Change Log
Feature
- Implement A2Grad optimizer, #136
- Implement Accelerated SGD optimizer, #137
- Implement Adaptive SGD optimizer, #139
- Implement SGDW optimizer, #139
- Implement Yogi optimizer, #140
- Implement SWATS optimizer, #141
- Implement Fromage optimizer, #142
- Implement MSVAG optimizer, #143
- Implement AdaMod optimizer, #144
- Implement AggMo optimizer, #145
- Implement QHAdam, QHM optimizers, #146
- Implement PID optimizer, #147
Bug
pytorch-optimizer v2.7.0
Change Log
Features
- Implement
AdaNormoptimizer, #133 - Implement
RotoGradoptimizer, #124, #134 - Implement
D-Adapt Adanoptimizer, #134 - Support
AdaNormvariant, #133, #134- AdaBelief
- AdamP
- AdamS
- AdaPNM
- diffGrad
- Lamb
- RAdam
- Ranger
- Adan
- Support
AMSGradvariant, #133, #134- diffGrad
- AdaFactor
- Support
degenerated_to_sgd, #133- Ranger
- Lamb
Refactor
- Rename
adamd_debias_termtoadam_debias, #133 - Merge the rectified version with the original, #133
- diffRGrad + diffGrad -> diffGrad
- RaLamb + Lamb -> Lamb
- now you can simply use with
rectify=True
Fix
- Fix
previous_graddeepcopy issue in Adan optimizer. #134
pytorch-optimizer v2.6.1
pytorch-optimizer v2.6.0
Change Log
Feature
- Implement SM3 optimizer, #130
- Tweak Scalable Shampoo optimizer, #128, #129
- implement a new preconditioner type, OUTPUT.
- optimize speed/memory usage of coupled Newton iteration and power iteration methods.
- use in-place operation (SQRT-N Grafting).
- clean-up
shampoo_utilsmore readable. - support
skip_preconditioning_rank_ltparameter to skip preconditioning in case of the low-rank gradient. - set default value for
preconditioning_compute_stepsto 1000. - set default value for
start_preconditioning_stepto 25.
pytorch-optimizer v2.5.2
pytorch-optimizer v2.5.1
pytorch-optimizer v2.5.0
pytorch-optimizer v2.4.2
Change Log
Bug
- Fix to deep-copy
inverse preconditioners
Deps
Docs
- Update Scalable Shampoo docstring (more parameter guides), #106
pytorch-optimizer v2.4.1
Change Log
Feature
- Rename the new
ShampootoScalableShampoo. #103 - Implement the old(?) version of Shampoo optimizer. #103
- Support
SVDmethod to calculate the inversepthroot matrix. #103- to boost the
M^{-1/p}calculation, performs batched SVD when available.
- to boost the
- Implement
AdamSoptimizer. #102 - Support
stable weight decayoption forAdaioptimizer. #102
Bug
- Fix
compute_power_svd()to get a singular value. #104