Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
217 changes: 217 additions & 0 deletions Code/.ipynb_checkpoints/Convert normal Distribution-checkpoint.ipynb

Large diffs are not rendered by default.

139 changes: 139 additions & 0 deletions Code/.ipynb_checkpoints/Pandas Apply-checkpoint.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,139 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Pandas Apply"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# import pandas\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"#Import dataset\n",
"loan = pd.read_csv('../Data/loan_train.csv', index_col = 'Loan_ID')"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# Define function\n",
"def missing(x):\n",
" return sum(x.isnull())"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Missing values per column\n"
]
},
{
"data": {
"text/plain": [
"Gender 13\n",
"Married 3\n",
"Dependents 15\n",
"Education 0\n",
"Self_Employed 32\n",
"dtype: int64"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Apply per column\n",
"print('Missing values per column')\n",
"loan.apply(missing, axis = 0).head()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Missing values per row\n"
]
},
{
"data": {
"text/plain": [
"Loan_ID\n",
"LP001002 1\n",
"LP001003 0\n",
"LP001005 0\n",
"LP001006 0\n",
"LP001008 0\n",
"dtype: int64"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Apply per row\n",
"print('Missing values per row')\n",
"loan.apply(missing, axis = 1).head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Loading