Skip to content

kurcontko/mnemotree

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

233 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

🌳 Mnemotree

Memory module for LLMs and Agents with MCP

License: MIT Python 3.10+ CI Quality Gate Status CodeQL

Mnemotree Logo

Mnemotree gives LLM agents biologically-inspired memory. Store, retrieve, and analyze structured knowledge with semantic search, importance scoring, and relationship tracking. Integrates with LangChain, Autogen, and any MCP-compliant tool.

⚑ MCP Quickstart

Run mnemotree as an MCP server with zero setup:

uvx --from "git+https://github.com/kurcontko/mnemotree.git" --with "mnemotree[mcp_server]" mnemotree-mcp

Claude Desktop / Claude Code

Add to your config (claude_desktop_config.json, .mcp.json, or ~/.claude.json):

{
  "mcpServers": {
    "mnemotree": {
      "command": "uvx",
      "args": [
        "--from", "git+https://github.com/kurcontko/mnemotree.git",
        "--with", "mnemotree[mcp_server]",
        "mnemotree-mcp"
      ],
      "env": {
        "MNEMOTREE_MCP_PERSIST_DIR": "/Users/yourname/.mnemotree/chromadb"
      }
    }
  }
}

Codex CLI

Add to your ~/.codex/config.toml:

[mcp_servers.mnemotree]
command = "uvx"
args = [
  "--from", "git+https://github.com/kurcontko/mnemotree.git",
  "--with", "mnemotree[mcp_server]",
  "mnemotree-mcp",
]
startup_timeout_sec = 120
env = { MNEMOTREE_MCP_PERSIST_DIR = "/Users/yourname/.mnemotree/chromadb" }

Local Development

Replace git+https://... with /path/to/mnemotree to use your local clone.

Persistence

MNEMOTREE_MCP_PERSIST_DIR controls where memories are stored. Use an absolute path for consistent storage across clients. Omit to default to .mnemotree/chromadb.

HTTP Transport (Multi-Client)

uvx --from "git+https://github.com/kurcontko/mnemotree.git" --with "mnemotree[mcp_server]" mnemotree-mcp run --transport http --port 8000

Connect MCP clients to http://localhost:8000/mcp.

🌟 Features

  • Memory Types: Episodic, semantic, autobiographical, prospective, procedural, priming, conditioning, working, entities
  • Storage Backends: ChromaDB, SQLite+sqlite-vec, Neo4j
  • Analysis: NER, keyword extraction, importance scoring, emotional context
  • Retrieval: Semantic similarity, filtering, relationship queries
  • Lite Mode: CPU-only embeddings, no LLM required

πŸš€ Getting Started

Installation

git clone https://github.com/kurcontko/mnemotree.git && cd mnemotree
uv venv .venv && uv pip install -e ".[lite,chroma]"

For NER: uv run python -m spacy download en_core_web_sm

For OpenAI features: cp .env.sample .env and add your API key.

Basic Usage

from mnemotree import MemoryCore
from mnemotree.store import ChromaMemoryStore

store = ChromaMemoryStore(persist_directory=".mnemotree/chromadb")
memory_core = MemoryCore(store=store)

# Store
memory = await memory_core.remember(
    content="User prefers Python for its readability.",
    tags=["preferences", "programming"]
)

# Recall
memories = await memory_core.recall("programming languages", limit=5)

# Reflect
insights = await memory_core.reflect(min_importance=0.7)

Lite Mode (CPU, no LLM)

memory_core = MemoryCore(store=store, mode="lite")

Uses local embeddings. Set MNEMOTREE_LITE_EMBEDDING_MODEL to override.

Alternative NER backends: mnemotree[ner_hf], mnemotree[ner_gliner], mnemotree[ner_stanza]

βš™οΈ MCP Environment Variables

Variable Default Description
MNEMOTREE_MCP_PERSIST_DIR .mnemotree/chromadb Storage directory
MNEMOTREE_MCP_COLLECTION memories Collection name
MNEMOTREE_MCP_CHROMA_HOST/PORT/SSL β€” Remote ChromaDB
MNEMOTREE_MCP_ENABLE_NER false Enable NER
MNEMOTREE_MCP_ENABLE_KEYWORDS false Enable keyword extraction
MNEMOTREE_MCP_NER_BACKEND β€” spacy, transformers, gliner, stanza
MNEMOTREE_MCP_NER_MODEL β€” Backend-specific model ID/path

Avoid running multiple MCP processes against the same Chroma directory.

πŸ”§ Storage

# ChromaDB (local)
from mnemotree.store import ChromaMemoryStore
store = ChromaMemoryStore(persist_directory=".mnemotree/chromadb")

# ChromaDB (remote)
store = ChromaMemoryStore(host="localhost", port=8000)

# Neo4j
from mnemotree.store import Neo4jMemoryStore
store = Neo4jMemoryStore(uri="neo4j://localhost:7687", user="neo4j", password="password")

🐳 Docker

# MCP server
docker compose -f docker/mcp/docker-compose.yml up --build

# ChromaDB
docker compose -f docker/chromadb/docker-compose.yml up -d

# Neo4j
docker compose -f docker/neo4j/docker-compose.yml up -d

πŸ“¦ Extras

uv pip install -e ".[chroma]"      # ChromaDB
uv pip install -e ".[neo4j]"       # Neo4j
uv pip install -e ".[sqlite_vec]"  # SQLite + sqlite-vec
uv pip install -e ".[lite]"        # Local embeddings
uv pip install -e ".[ner_hf]"      # Transformers NER
uv pip install -e ".[all]"         # Everything

Development

make lint typecheck test
make precommit-install

πŸ’‘ Examples

🀝 Contributing

Contributions welcome! Fork the repo, create a branch, add tests, and submit a PR.

πŸ“ License

MIT - see LICENSE

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages