Skip to content

latitude-dev/rosetta-js

Repository files navigation

Rosetta

The translation layer for LLM provider messages.

Rosetta converts messages between different LLM providers using GenAI, a standardized intermediate format. Just pass in messages from any provider—OpenAI, Anthropic, Google, or even custom formats—and get consistent output. No manual mapping required.

Rosetta was made by Latitude as an effort to standardize the observability layer for any LLM application!

Features

  • 🔄 Convert messages from any supported provider to a unified GenAI format
  • 🔀 Convert GenAI messages to any supported provider format
  • 🪄 Universal fallback - Pass messages from any LLM provider or framework, even unsupported ones, and we'll attempt best-effort conversion
  • 🔍 Automatic provider detection when source is not specified
  • 📝 Full TypeScript support with strict types
  • ✅ Runtime validation with Zod schemas
  • 💾 Preserve provider-specific metadata for lossless round-trips
  • 📌 System message order preservation - system messages retain their original position in conversation when translating between providers
  • 🌐 Works in Node.js and browsers
  • 🌳 Tree-shakeable ESM build

Installation

npm install rosetta-ai
# or
pnpm add rosetta-ai
# or
yarn add rosetta-ai

Quick Start

import { translate } from "rosetta-ai";

// Translate any LLM messages - provider is auto-detected
const openAIMessages = [
  { role: "system", content: "You are a helpful assistant." },
  { role: "user", content: "Hello!" },
  { role: "assistant", content: "Hi there! How can I help you today?" },
];

const { messages, system } = translate(openAIMessages);
// messages: GenAI format messages (user + assistant)
// system: extracted system instructions

Works with messages from any provider:

// OpenAI Chat Completions
const openAI = [{ role: "user", content: "Hello" }];
translate(openAI); // Just works

// Anthropic
const anthropic = [{ role: "user", content: [{ type: "text", text: "Hello" }] }];
translate(anthropic); // Just works

// Vercel AI SDK
const vercelAI = [{ role: "user", content: "Hello" }];
translate(vercelAI); // Just works

// More providers...

// Unknown provider? Also works (uses Compat fallback)
const unknown = [{ role: "user", content: "Hello" }];
translate(unknown); // Still works

API

translate

The main function for translating messages between providers.

import { translate, Provider } from "rosetta-ai";

const { messages, system } = translate(inputMessages, {
  from: Provider.OpenAICompletions, // Source provider (optional, auto-detected if omitted)
  to: Provider.GenAI,               // Target provider (optional, defaults to GenAI)
  system: "You are helpful",        // Separated system instructions (optional)
  direction: "input",               // "input" (default) or "output"
});

Options:

Option Type Default Description
from Provider auto-detected Source provider format
to Provider Provider.GenAI Target provider format
system string | object | object[] - System instructions (for providers that separate them)
direction "input" | "output" "input" Affects role interpretation when translating strings

Returns: { messages, system? } - translated messages and optional system instructions

safeTranslate

Same as translate, but returns an error object instead of throwing.

import { safeTranslate } from "rosetta-ai";

const result = safeTranslate(messages, options);

if (result.error) {
  // Handle error: result.error is Error
} else {
  // Use result.messages (properly typed)
}

Translator Class

For advanced configuration, create a Translator instance:

import { Translator, Provider } from "rosetta-ai";

const translator = new Translator({
  // Custom priority order for provider auto-detection
  inferPriority: [Provider.OpenAICompletions, Provider.Anthropic, Provider.GenAI],
  
  // Filter out empty messages during translation (default: false)
  filterEmptyMessages: true,
});

const { messages } = translator.translate(inputMessages);
const safeResult = translator.safeTranslate(inputMessages);

Configuration Options:

Option Type Default Description
inferPriority Provider[] DEFAULT_INFER_PRIORITY Priority order for provider auto-detection
filterEmptyMessages boolean false Remove empty messages (no parts, or only empty text) during translation
providerMetadata "preserve" | "passthrough" | "strip" "preserve" How to handle provider metadata (extra fields) in translation

Input Flexibility

Messages and system instructions accept flexible formats:

// Messages: string or array
translate("Hello!");                              // String → single message
translate([{ role: "user", content: "Hello!" }]); // Array of provider messages

// System: string, object, or array
translate(messages, { system: "You are helpful" });
translate(messages, { system: { type: "text", content: "Be helpful" } });
translate(messages, { system: [{ type: "text", content: "Part 1" }, { type: "text", content: "Part 2" }] });

Common Use Cases

Translate API responses for storage or display

import OpenAI from "openai";
import { translate, Provider } from "rosetta-ai";

const openai = new OpenAI();
const completion = await openai.chat.completions.create({
  model: "gpt-4o",
  messages: [{ role: "user", content: "What's the weather?" }],
});

// Translate OpenAI response to unified GenAI format
const { messages } = translate([completion.choices[0].message], {
  from: Provider.OpenAICompletions,
});

// Now you have a consistent format regardless of which provider you used
console.log(messages[0].parts[0]); // { type: "text", content: "..." }

Cross-provider translation

import { translate, Provider } from "rosetta-ai";

// Translate OpenAI messages to Vercel AI SDK format
const openAIMessages = [
  { role: "system", content: "You are helpful." },
  { role: "user", content: "Hello!" },
];

const { messages } = translate(openAIMessages, {
  from: Provider.OpenAICompletions,
  to: Provider.VercelAI,
});
// Result: Vercel AI SDK compatible messages

Handle tool calls across providers

import { translate, Provider } from "rosetta-ai";

// OpenAI tool call format
const openAIWithToolCall = [
  {
    role: "assistant",
    content: null,
    tool_calls: [{
      id: "call_abc123",
      type: "function",
      function: { name: "get_weather", arguments: '{"location":"Paris"}' },
    }],
  },
  {
    role: "tool",
    tool_call_id: "call_abc123",
    content: '{"temp": 20}',
  },
];

// Translates to unified GenAI format with tool_call and tool_call_response parts
const { messages } = translate(openAIWithToolCall, {
  from: Provider.OpenAICompletions,
});

// Tool call part
messages[0].parts[0]; // { type: "tool_call", name: "get_weather", arguments: { location: "Paris" }, ... }

// Tool response part  
messages[1].parts[0]; // { type: "tool_call_response", call_id: "call_abc123", content: {...}, ... }

Translate multimodal content

import { translate, Provider } from "rosetta-ai";

const anthropicWithImage = [
  {
    role: "user",
    content: [
      { type: "text", text: "What's in this image?" },
      {
        type: "image",
        source: {
          type: "base64",
          media_type: "image/png",
          data: "iVBORw0KGgo...",
        },
      },
    ],
  },
];

const { messages } = translate(anthropicWithImage, {
  from: Provider.Anthropic,
});

// Image converted to blob part
messages[0].parts[1]; // { type: "blob", modality: "image", mime_type: "image/png", content: "..." }

Safe translation with error handling

import { safeTranslate } from "rosetta-ai";

const result = safeTranslate(unknownMessages);

if (result.error) {
  console.error("Translation failed:", result.error.message);
} else {
  console.log("Translated:", result.messages);
}

Supported Providers

Provider toGenAI fromGenAI Separated System Description
GenAI Optional Intermediate format (default target)
Promptl - promptl-ai format
Vercel AI - Vercel AI SDK messages
OpenAI Completions - - Chat Completions API
OpenAI Responses - - Responses API
Anthropic - Yes Messages API
Google Gemini - Yes GenerateContent API
Compat - Optional Universal fallback
  • toGenAI = Can translate from this provider to GenAI (source)
  • fromGenAI = Can translate to this provider from GenAI (target)
  • Separated System = Provider separates system instructions from messages (use the system option if needed)

System message order preservation: When translating to a provider that separates system instructions (like GenAI), system messages are extracted from the conversation and returned in the system field. Rosetta preserves the original position of each system message so that when translating back to a provider with inline system messages (like Promptl or Vercel AI), the system messages are re-inserted at their original positions in the conversation.

Universal Compatibility

The Compat provider is a universal fallback that handles messages from any LLM provider—even ones not explicitly supported. When you call translate() without specifying a source provider, Rosetta tries to match against known provider schemas. If none match, it automatically falls back to Compat, which:

  • Normalizes field names across conventions (tool_calls, toolCalls, tool-calls all work)
  • Detects common patterns: roles, content arrays, tool calls, images, reasoning, etc.
  • Handles formats from Cohere, Mistral, Ollama, AWS Bedrock, LangChain, and more
  • Preserves unrecognized data so nothing is lost
// Works with any provider - no need to specify the source
const messages = [
  { role: "user", content: "Hello" },
  { role: "assistant", toolCalls: [{ id: "1", function: { name: "search", arguments: "{}" } }] },
];

const { messages: translated } = translate(messages); // Auto-detected and translated

More providers will be added. See AGENTS.md for contribution guidelines.

GenAI Format

GenAI is the intermediate format used for translation, inspired by the OpenTelemetry GenAI semantic conventions. It provides a unified representation of LLM messages across all providers:

import type { GenAIMessage, GenAISystem } from "rosetta-ai";

const message: GenAIMessage = {
  role: "user",           // "user" | "assistant" | "system" | "tool" | string
  parts: [                // Array of content parts
    { type: "text", content: "What's in this image?" },
    { type: "uri", uri: "https://example.com/cat.jpg", modality: "image" },
  ],
  name: "Alice",          // Optional: participant name
  finish_reason: "stop",  // Optional: why the model stopped
};

const system: GenAISystem = [
  { type: "text", content: "You are a helpful assistant." },
];

Part Types

Type Description Key Fields
text Plain text content content
blob Binary data (base64) content, mime_type, modality
file File reference by ID file_id, modality
uri URL reference uri, modality
reasoning Model thinking/reasoning content
tool_call Tool/function call request call_id, name, arguments
tool_call_response Tool/function result call_id, content
generic Custom/extensible type content, any additional fields

Provider Metadata

All GenAI entities support _provider_metadata to preserve extra fields during translation. The metadata has two types of fields:

  1. _known_fields: Cross-provider semantic data (toolName, isError, isRefusal, originalType) used to build accurate translations
  2. Extra fields: Provider-specific data preserved for round-trips
const message: GenAIMessage = {
  role: "tool",
  parts: [{
    type: "tool_call_response",
    id: "call_123",
    response: "Error occurred",
    _provider_metadata: {
      // Known fields - used by target providers to build accurate translations
      _known_fields: {
        toolName: "get_weather",  // Tool name (GenAI schema doesn't include it)
        isError: true,            // Error indicator
      },
      // Parts metadata - collapsed part-level metadata (for providers with string-only content)
      _partsMetadata: {
        _promptlSourceMap: [...], // Part metadata moved to message level
      },
      // Extra fields - any other provider-specific data
      annotations: [...],
    },
  }],
};

Note on _partsMetadata: Some providers require string content for certain message types (e.g., VercelAI system messages). When translating to these providers, part-level metadata is collected and stored in _partsMetadata at the message level. When translating back to a provider that supports structured content, this metadata is automatically restored to the first content part. Important: In passthrough mode, if the target provider doesn't support structured content (like VercelAI system messages), part-level metadata stored in _partsMetadata will be lost. Use preserve mode if you need to retain this metadata through round-trips.

Provider Metadata Mode

The providerMetadata option controls how metadata (extra fields) is handled in the output.

Mode Description
"preserve" (default) Keep _provider_metadata nested in output entities
"passthrough" Spread extra fields as direct properties on output entities
"strip" Don't include metadata (only use _known_fields for translation)
// Preserve metadata (default) - keeps _provider_metadata in output
const translator = new Translator(); // or { providerMetadata: "preserve" }
translator.translate(messages, { from: Provider.Promptl, to: Provider.GenAI });

// Passthrough - spread extra fields on output entities for lossless round-trips
const passthroughTranslator = new Translator({ providerMetadata: "passthrough" });
passthroughTranslator.translate(messages, { from: Provider.GenAI, to: Provider.Promptl });

// Strip - clean output without metadata
const stripTranslator = new Translator({ providerMetadata: "strip" });
stripTranslator.translate(messages, { to: Provider.VercelAI });

Note: When translating between the same provider (e.g., GenAI → GenAI), providerMetadata is automatically set to "passthrough" to ensure lossless round-trips, regardless of the configured setting.

TypeScript Support

All types are exported for type-safe usage:

import {
  // Core types
  type GenAIMessage,
  type GenAIPart,
  type GenAISystem,
  
  // API types
  type TranslateOptions,
  type TranslateResult,
  
  // Provider types
  Provider,
  type ProviderMessage,
  type ProviderSystem,
} from "rosetta-ai";

// Type-safe translation
const result: TranslateResult<Provider.GenAI> = translate(messages);

// Access provider-specific message types
type OpenAIMsg = ProviderMessage<Provider.OpenAICompletions>;

Examples

The examples folder contains E2E tests demonstrating real-world usage with actual provider SDKs:

cd examples
pnpm install
pnpm test  # Runs tests (imports directly from src, no build needed)

Tests include:

  • Real API calls (when API keys are set) - validates against actual provider responses
  • Hardcoded messages - runs without API keys for fast iteration

Development

Prerequisites

  • Node.js >= 20.0.0
  • pnpm >= 10.0.0

Setup

# Clone the repository
git clone https://github.com/latitude-dev/rosetta-ts.git
cd rosetta-ts

# Install dependencies
pnpm install

Commands

Command Description
pnpm install Install dependencies
pnpm build Build the package
pnpm dev Build in watch mode
pnpm test Run tests
pnpm lint Check for lint, format and type errors
pnpm format Format code and fixable lint errors

Adding a New Provider

The AGENTS.md file contains extensively curated guidelines for AI coding agents, including detailed step-by-step instructions for adding new providers. The easiest way to add a provider is to give a coding agent (like Cursor, Claude, or similar) the provider's message schema along with a prompt like this:

Based on the attached [Provider Name] message schema (see attached), add a
[Provider Name] provider to the package. Follow ALL the guidelines in AGENTS.md.

- This provider will be source-only / source and target.
- This provider does / does not separate system instructions from the message list.
- Build a unified schema if the provider has separate types for input and output.

The schema can be in any format the agent can understand: TypeScript SDK types, JSON Schema, OpenAPI definitions, Python types, or even API documentation.

Example prompt for adding Google Gemini:

Based on the attached Google Gemini TypeScript SDK types (specifically the
messages and system instructions for the GenerateContent function), add a
Google provider to the package. Follow ALL the guidelines in AGENTS.md.

- This provider will be source-only, not a target.
- This provider separates system instructions from the message list.
- Build a unified schema since the provider has different types for input and output.

The agent will handle creating the schema files, implementing the specification, registering the provider, writing tests, and updating documentation—all following the project's conventions.

License

MIT - see LICENSE for details.

Contributing

Contributions are welcome! Please read AGENTS.md for detailed contribution guidelines, including architecture decisions, coding standards, and the step-by-step process for adding new providers.

About

The translation layer for LLM provider messages

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published