|
| 1 | +use std::borrow::Borrow; |
| 2 | + |
| 3 | +use p3_air::{Air, AirBuilder, BaseAir}; |
| 4 | +use p3_field::PrimeCharacteristicRing; |
| 5 | +use p3_matrix::Matrix; |
| 6 | + |
| 7 | +use crate::{ |
| 8 | + constant::{DOT_PRODUCT_AIR_COLUMNS, EF}, |
| 9 | + witness::dot_product::WitnessDotProduct, |
| 10 | +}; |
| 11 | + |
| 12 | +/// Dot Product AIR |
| 13 | +/// |
| 14 | +/// ## Trace Layout |
| 15 | +/// |
| 16 | +/// Each dot product is computed recursively, row by row, from the last element to the first. |
| 17 | +/// The `start_flag` column marks the beginning of a new dot product computation (the first row |
| 18 | +/// in its sequence). The `len` column acts as a counter, decreasing with each step. |
| 19 | +/// |
| 20 | +/// An example trace for two dot products might look like this: |
| 21 | +/// |
| 22 | +/// | start_flag | len | addr_a | addr_b | addr_res | val_a | val_b | res | computation | |
| 23 | +/// |:----------:|:---:|:------:|:------:|:--------:|:------:|:------:|:------:|:-------------:| |
| 24 | +/// | 1 | 4 | 90 | 211 | 74 | m[90] | m[211] | m[74] | v_a*v_b + C_next | |
| 25 | +/// | 0 | 3 | 91 | 212 | 74 | m[91] | m[212] | m[74] | v_a*v_b + C_next | |
| 26 | +/// | 0 | 2 | 92 | 213 | 74 | m[92] | m[213] | m[74] | v_a*v_b + C_next | |
| 27 | +/// | 0 | 1 | 93 | 214 | 74 | m[93] | m[214] | m[74] | v_a*v_b | |
| 28 | +/// | 1 | 10 | 1008 | 854 | 325 | m[1008]| m[854] | m[325] | v_a*v_b + C_next | |
| 29 | +/// | ... | ... | ... | ... | ... | ... | ... | ... | ... | |
| 30 | +
|
| 31 | +#[derive(Debug, Default)] |
| 32 | +pub struct DotProductAir; |
| 33 | + |
| 34 | +impl<F> BaseAir<F> for DotProductAir { |
| 35 | + fn width(&self) -> usize { |
| 36 | + DOT_PRODUCT_AIR_COLUMNS |
| 37 | + } |
| 38 | +} |
| 39 | + |
| 40 | +impl<AB: AirBuilder> Air<AB> for DotProductAir { |
| 41 | + #[inline] |
| 42 | + fn eval(&self, builder: &mut AB) { |
| 43 | + // Get a view of the main execution trace. |
| 44 | + let main = builder.main(); |
| 45 | + |
| 46 | + // Get the current row (`local`) and the next row (`next`) from the trace. |
| 47 | + let local = main.row_slice(0).unwrap(); |
| 48 | + let local = local.borrow(); |
| 49 | + |
| 50 | + let next = main.row_slice(1).unwrap(); |
| 51 | + let next = next.borrow(); |
| 52 | + |
| 53 | + // Destructure the local row into named variables for clarity. |
| 54 | + let [ |
| 55 | + start_flag_local, |
| 56 | + len_local, |
| 57 | + addr_a_local, |
| 58 | + addr_b_local, |
| 59 | + _addr_res_local, |
| 60 | + val_a_local, |
| 61 | + val_b_local, |
| 62 | + res_local, |
| 63 | + computation_local, |
| 64 | + ]: [AB::Expr; DOT_PRODUCT_AIR_COLUMNS] = local |
| 65 | + .iter() |
| 66 | + .map(|v| v.clone().into()) |
| 67 | + .collect::<Vec<_>>() |
| 68 | + .try_into() |
| 69 | + .unwrap(); |
| 70 | + |
| 71 | + // Destructure the next row into named variables. |
| 72 | + let [ |
| 73 | + start_flag_next, |
| 74 | + len_next, |
| 75 | + addr_a_next, |
| 76 | + addr_b_next, |
| 77 | + _addr_res_next, |
| 78 | + _val_a_next, |
| 79 | + _val_b_next, |
| 80 | + _res_next, |
| 81 | + computation_next, |
| 82 | + ]: [AB::Expr; DOT_PRODUCT_AIR_COLUMNS] = next |
| 83 | + .iter() |
| 84 | + .map(|v| v.clone().into()) |
| 85 | + .collect::<Vec<_>>() |
| 86 | + .try_into() |
| 87 | + .unwrap(); |
| 88 | + |
| 89 | + // TRANSITION CONSTRAINTS |
| 90 | + |
| 91 | + // This constraint ensures that the `start_flag` is always boolean. |
| 92 | + // |
| 93 | + // It's checked on the `next` row, as the last row of the trace will have a dummy next row. |
| 94 | + builder.assert_bool(start_flag_next.clone()); |
| 95 | + |
| 96 | + // This is the core recursive constraint for the dot product. |
| 97 | + // |
| 98 | + // `computation_local` = `val_a * val_b` + `computation_next` (if continuing a product) |
| 99 | + // |
| 100 | + // If the next row starts a new dot product (`start_flag_next`=1), `computation_next` is ignored. |
| 101 | + let product_local = val_a_local * val_b_local; |
| 102 | + let not_start_flag_next = AB::Expr::ONE - start_flag_next.clone(); |
| 103 | + builder.assert_eq( |
| 104 | + computation_local.clone(), |
| 105 | + start_flag_next.clone() * product_local.clone() |
| 106 | + + not_start_flag_next.clone() * (product_local + computation_next), |
| 107 | + ); |
| 108 | + |
| 109 | + // When not starting a new product, the length must decrement by 1. |
| 110 | + // `(1 - start_flag_next) * (len_local - (len_next + 1)) = 0` |
| 111 | + builder.assert_zero( |
| 112 | + not_start_flag_next.clone() * (len_local.clone() - (len_next + AB::Expr::ONE)), |
| 113 | + ); |
| 114 | + |
| 115 | + // If the remaining length is 1, the next row must start a new product (`start_flag_next` = 1). |
| 116 | + // |
| 117 | + // This is enforced by `(len_local - 1) * (1 - start_flag_next) = 0`. |
| 118 | + builder.assert_zero((len_local - AB::Expr::ONE) * (AB::Expr::ONE - start_flag_next)); |
| 119 | + |
| 120 | + // When not starting a new product, address `a` must increment by 1. |
| 121 | + // `(1 - start_flag_next) * (addr_a_next - (addr_a_local + 1)) = 0` |
| 122 | + builder.assert_zero( |
| 123 | + not_start_flag_next.clone() * (addr_a_next - (addr_a_local + AB::Expr::ONE)), |
| 124 | + ); |
| 125 | + |
| 126 | + // When not starting a new product, address `b` must increment by 1. |
| 127 | + // `(1 - start_flag_next) * (addr_b_next - (addr_b_local + 1)) = 0` |
| 128 | + builder.assert_zero(not_start_flag_next * (addr_b_next - (addr_b_local + AB::Expr::ONE))); |
| 129 | + |
| 130 | + // If this is the first row of a dot product (`start_flag_local` = 1), the accumulated |
| 131 | + // `computation_local` must equal the final result `res_local`. |
| 132 | + builder.assert_zero(start_flag_local * (computation_local - res_local)); |
| 133 | + } |
| 134 | +} |
| 135 | + |
| 136 | +/// ## Build Dot Product Columns |
| 137 | +/// |
| 138 | +/// This function constructs the execution trace (witness) for the Dot Product AIR. |
| 139 | +/// It takes a high-level description of dot product operations and expands it into the |
| 140 | +/// row-by-row format required by the AIR constraints. |
| 141 | +/// |
| 142 | +/// ### Arguments |
| 143 | +/// * `witness`: A slice of `WitnessDotProduct` structs, each describing one dot product. |
| 144 | +/// |
| 145 | +/// ### Returns |
| 146 | +/// A tuple containing: |
| 147 | +/// * A vector of columns representing the complete, padded execution trace. |
| 148 | +/// * The number of padding rows that were added. |
| 149 | +pub fn build_dot_product_columns(witness: &[WitnessDotProduct]) -> (Vec<Vec<EF>>, usize) { |
| 150 | + // Initialize vectors for each column of the trace. |
| 151 | + // |
| 152 | + // These will be populated and returned. |
| 153 | + let ( |
| 154 | + mut flag, |
| 155 | + mut len, |
| 156 | + mut index_a, |
| 157 | + mut index_b, |
| 158 | + mut index_res, |
| 159 | + mut value_a, |
| 160 | + mut value_b, |
| 161 | + mut res, |
| 162 | + mut computation, |
| 163 | + ) = ( |
| 164 | + Vec::new(), |
| 165 | + Vec::new(), |
| 166 | + Vec::new(), |
| 167 | + Vec::new(), |
| 168 | + Vec::new(), |
| 169 | + Vec::new(), |
| 170 | + Vec::new(), |
| 171 | + Vec::new(), |
| 172 | + Vec::new(), |
| 173 | + ); |
| 174 | + |
| 175 | + // Process each high-level dot product operation from the witness. |
| 176 | + for dot_product in witness { |
| 177 | + // A dot product must have at least one term. |
| 178 | + assert!(dot_product.len > 0, "Dot product length must be positive."); |
| 179 | + |
| 180 | + // Build the `computation` column |
| 181 | + // |
| 182 | + // This is the most complex column, representing the recursive accumulation. |
| 183 | + // We build it backwards, from the last term to the first. |
| 184 | + let mut current_computation = vec![EF::ZERO; dot_product.len]; |
| 185 | + let last_idx = dot_product.len - 1; |
| 186 | + |
| 187 | + // Base case: The computation for the last term is just the product of the last elements. |
| 188 | + current_computation[last_idx] = |
| 189 | + dot_product.slice_0[last_idx] * dot_product.slice_1[last_idx]; |
| 190 | + |
| 191 | + // Recursive step: Iterate backwards from the second-to-last term. |
| 192 | + for i in (0..last_idx).rev() { |
| 193 | + // The computation at step `i` is the product of elements at `i` plus the computation from step `i+1`. |
| 194 | + current_computation[i] = |
| 195 | + current_computation[i + 1] + dot_product.slice_0[i] * dot_product.slice_1[i]; |
| 196 | + } |
| 197 | + // Add the fully computed trace for this dot product to the main computation column. |
| 198 | + computation.extend(current_computation); |
| 199 | + |
| 200 | + // Build the other columns for the current dot product |
| 201 | + |
| 202 | + // The `flag` column is: |
| 203 | + // - 1 for the first row and |
| 204 | + // - 0 for all subsequent rows of this operation. |
| 205 | + flag.push(EF::ONE); |
| 206 | + flag.extend(vec![EF::ZERO; dot_product.len - 1]); |
| 207 | + |
| 208 | + // The `len` column is a countdown from the total length to 1. |
| 209 | + len.extend((1..=dot_product.len).rev().map(EF::from_usize)); |
| 210 | + |
| 211 | + // The `index_a` and `index_b` columns are the memory addresses, incrementing from the start. |
| 212 | + index_a.extend( |
| 213 | + (dot_product.addr_0..(dot_product.addr_0 + dot_product.len)).map(EF::from_usize), |
| 214 | + ); |
| 215 | + index_b.extend( |
| 216 | + (dot_product.addr_1..(dot_product.addr_1 + dot_product.len)).map(EF::from_usize), |
| 217 | + ); |
| 218 | + |
| 219 | + // The `index_res` column holds the constant result address, repeated for every row. |
| 220 | + index_res.extend(vec![EF::from_usize(dot_product.addr_res); dot_product.len]); |
| 221 | + |
| 222 | + // The `value_a` and `value_b` columns are direct copies of the input slices. |
| 223 | + value_a.extend_from_slice(&dot_product.slice_0); |
| 224 | + value_b.extend_from_slice(&dot_product.slice_1); |
| 225 | + |
| 226 | + // The `res` column holds the final dot product result, repeated for every row. |
| 227 | + res.extend(vec![dot_product.res; dot_product.len]); |
| 228 | + } |
| 229 | + |
| 230 | + // Pad the trace to a power-of-two length |
| 231 | + // |
| 232 | + // This is required for efficient polynomial commitment schemes (e.g., using FFTs). |
| 233 | + let padding_len = flag.len().next_power_of_two() - flag.len(); |
| 234 | + |
| 235 | + // If there is padding, add it to the trace |
| 236 | + if padding_len > 0 { |
| 237 | + // Use `start_flag=1` and `len=1` for padding rows. This is a simple state that |
| 238 | + // trivially satisfies the transition constraints when the other values are zero. |
| 239 | + flag.extend(vec![EF::ONE; padding_len]); |
| 240 | + len.extend(vec![EF::ONE; padding_len]); |
| 241 | + // The rest of the padding values can be zero. |
| 242 | + index_a.extend(vec![EF::ZERO; padding_len]); |
| 243 | + index_b.extend(vec![EF::ZERO; padding_len]); |
| 244 | + index_res.extend(vec![EF::ZERO; padding_len]); |
| 245 | + value_a.extend(vec![EF::ZERO; padding_len]); |
| 246 | + value_b.extend(vec![EF::ZERO; padding_len]); |
| 247 | + res.extend(vec![EF::ZERO; padding_len]); |
| 248 | + computation.extend(vec![EF::ZERO; padding_len]); |
| 249 | + } |
| 250 | + |
| 251 | + // Return the completed columns and the amount of padding added. |
| 252 | + ( |
| 253 | + vec![ |
| 254 | + flag, |
| 255 | + len, |
| 256 | + index_a, |
| 257 | + index_b, |
| 258 | + index_res, |
| 259 | + value_a, |
| 260 | + value_b, |
| 261 | + res, |
| 262 | + computation, |
| 263 | + ], |
| 264 | + padding_len, |
| 265 | + ) |
| 266 | +} |
0 commit comments