Skip to content

Commit 7fddef6

Browse files
committed
fix
1 parent 975ebd9 commit 7fddef6

File tree

3 files changed

+12
-12
lines changed

3 files changed

+12
-12
lines changed

Mathlib/CategoryTheory/Sites/Descent/DescentData.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -598,7 +598,7 @@ noncomputable def fullyFaithfulToDescentData [F.IsPrestack J] (hf : Sieve.ofArro
598598
isPrestackFor_iff_isSheafFor]
599599
intro M N
600600
refine ((isSheaf_iff_isSheaf_of_type _ _).1
601-
(IsPrestack.isSheaf J M N)).isSheafFor _ _ ?_
601+
(IsPrestack.isSheaf J M N)).isSheafFor _ ?_
602602
rwa [GrothendieckTopology.mem_over_iff, Sieve.generate_sieve, Equiv.apply_symm_apply])
603603

604604
lemma isPrestackFor [F.IsPrestack J] {S : C} (R : Presieve S) (hR : Sieve.generate R ∈ J S) :

Mathlib/CategoryTheory/Sites/Descent/Precoverage.lean

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -234,21 +234,21 @@ is a prestack and `f'` a covering family, this is the morphism `D₁.obj i ⟶ D
234234
that is deduced from `φ` by gluing. -/
235235
noncomputable def hom (i : ι) : D₁.obj i ⟶ D₂.obj i :=
236236
F.presheafHomObjHomEquiv.symm
237-
(Presieve.IsSheafFor.amalgamate (Presieve.IsSheaf.isSheafFor _
238-
((isSheaf_iff_isSheaf_of_type _ _).1 (IsPrestack.isSheaf J _ _)) _
239-
(by simpa using sieve_mem _ hf' i)) _
240-
(compatible_familyOfElements w φ i))
237+
(Presieve.IsSheafFor.amalgamate
238+
(((isSheaf_iff_isSheaf_of_type _ _).1 (IsPrestack.isSheaf J _ _)).isSheafFor _
239+
(by simpa using sieve_mem _ hf' i)) _
240+
(compatible_familyOfElements w φ i))
241241

242242
lemma map_hom ⦃i : ι⦄ ⦃Y : C⦄ (q : Y ⟶ X i) ⦃j : ι'⦄
243243
(a : Y ⟶ X' j) (fac : a ≫ f' j = q ≫ f i := by cat_disch) :
244244
(F.map q.op.toLoc).toFunctor.map (hom w hf' φ i) = mor w φ q a fac := by
245-
let s := Presieve.IsSheafFor.amalgamate (Presieve.IsSheaf.isSheafFor _
246-
((isSheaf_iff_isSheaf_of_type _ _).1 (IsPrestack.isSheaf J _ _)) _
245+
let s := Presieve.IsSheafFor.amalgamate
246+
(((isSheaf_iff_isSheaf_of_type _ _).1 (IsPrestack.isSheaf J _ _)).isSheafFor _
247247
(by simpa using sieve_mem _ hf' i)) _
248248
(compatible_familyOfElements w φ i)
249249
have hs : (familyOfElements w φ i).IsAmalgamation s :=
250-
Presieve.IsSheafFor.isAmalgamation (Presieve.IsSheaf.isSheafFor _
251-
((isSheaf_iff_isSheaf_of_type _ _).1 (IsPrestack.isSheaf J _ _)) _
250+
Presieve.IsSheafFor.isAmalgamation
251+
(((isSheaf_iff_isSheaf_of_type _ _).1 (IsPrestack.isSheaf J _ _)).isSheafFor _
252252
(by simpa using sieve_mem _ hf' i)) (compatible_familyOfElements w φ i)
253253
simpa [hom, familyOfElements_eq w φ (Z := Over.mk q) _ a fac,
254254
presheafHomObjHomEquiv, pullHom, mapComp'_id_comp_hom_app,

Mathlib/CategoryTheory/Sites/Types.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -87,10 +87,10 @@ open Presieve
8787
`(α → S(*)) → S(α)` that is inverse to `eval`. -/
8888
noncomputable def typesGlue (S : Type uᵒᵖ ⥤ Type u) (hs : IsSheaf typesGrothendieckTopology S)
8989
(α : Type u) (f : α → S.obj (op PUnit)) : S.obj (op α) :=
90-
(hs.isSheafFor _ _ (generate_discretePresieve_mem α)).amalgamate
90+
(hs.isSheafFor _ (generate_discretePresieve_mem α)).amalgamate
9191
(fun _ g hg => S.map (↾fun _ => PUnit.unit).op <| f <| g <| Classical.choose hg)
9292
fun β γ δ g₁ g₂ f₁ f₂ hf₁ hf₂ h =>
93-
(hs.isSheafFor _ _ (generate_discretePresieve_mem δ)).isSeparatedFor.ext fun ε g ⟨x, _⟩ => by
93+
(hs.isSheafFor _ (generate_discretePresieve_mem δ)).isSeparatedFor.ext fun ε g ⟨x, _⟩ => by
9494
have : f₁ (Classical.choose hf₁) = f₂ (Classical.choose hf₂) :=
9595
Classical.choose_spec hf₁ (g₁ <| g x) ▸
9696
Classical.choose_spec hf₂ (g₂ <| g x) ▸ congr_fun h _
@@ -103,7 +103,7 @@ theorem eval_typesGlue {S hs α} (f) : eval.{u} S α (typesGlue S hs α f) = f :
103103
convert FunctorToTypes.map_id_apply S _
104104

105105
theorem typesGlue_eval {S hs α} (s) : typesGlue.{u} S hs α (eval S α s) = s := by
106-
apply (hs.isSheafFor _ _ (generate_discretePresieve_mem α)).isSeparatedFor.ext
106+
apply (hs.isSheafFor _ (generate_discretePresieve_mem α)).isSeparatedFor.ext
107107
intro β f hf
108108
apply (IsSheafFor.valid_glue _ _ _ hf).trans
109109
apply (FunctorToTypes.map_comp_apply _ _ _ _).symm.trans

0 commit comments

Comments
 (0)