Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
43 changes: 43 additions & 0 deletions Mathlib/Analysis/LocallyConvex/WithSeminorms.lean
Original file line number Diff line number Diff line change
Expand Up @@ -950,12 +950,26 @@ theorem LinearMap.withSeminorms_induced {q : SeminormFamily 𝕜₂ F ι}
refine iInf_congr fun i => ?_
exact Filter.comap_comap

protected theorem PolynormableSpace.induced [PolynormableSpace 𝕜₂ F] (f : E →ₛₗ[σ₁₂] F) :
PolynormableSpace 𝕜 E (topology := induced f inferInstance) := by
let _ : TopologicalSpace E := induced f inferInstance
exact f.withSeminorms_induced (PolynormableSpace.withSeminorms 𝕜₂ F) |>.toPolynormableSpace

lemma Topology.IsInducing.withSeminorms {q : SeminormFamily 𝕜₂ F ι}
(hq : WithSeminorms q) [TopologicalSpace E] {f : E →ₛₗ[σ₁₂] F} (hf : IsInducing f) :
WithSeminorms (q.comp f) := by
rw [hf.eq_induced]
exact f.withSeminorms_induced hq

theorem Topology.IsInducing.polynormableSpace [PolynormableSpace 𝕜₂ F]
[TopologicalSpace E] {f : E →ₛₗ[σ₁₂] F} (hf : IsInducing f) :
PolynormableSpace 𝕜 E :=
hf.withSeminorms (PolynormableSpace.withSeminorms 𝕜₂ F) |>.toPolynormableSpace

instance [PolynormableSpace 𝕜₂ F] {S : Submodule 𝕜₂ F} :
PolynormableSpace 𝕜₂ S :=
IsInducing.polynormableSpace (f := S.subtype) .subtypeVal

/-- (Disjoint) union of seminorm families. -/
protected def SeminormFamily.sigma {κ : ι → Type*} (p : (i : ι) → SeminormFamily 𝕜 E (κ i)) :
SeminormFamily 𝕜 E ((i : ι) × κ i) :=
Expand All @@ -972,13 +986,42 @@ theorem withSeminorms_iInf {κ : ι → Type*}
rw [iInf_sigma]
exact iInf_congr hp

theorem PolynormableSpace.iInf {t : ι → TopologicalSpace E}
(ht : ∀ i, PolynormableSpace 𝕜 E (topology := t i)) :
PolynormableSpace 𝕜 E (topology := ⨅ i, t i) := by
let _ : TopologicalSpace E := ⨅ i, t i
exact withSeminorms_iInf (fun i ↦ (ht i).withSeminorms') |>.toPolynormableSpace

theorem PolynormableSpace.sInf {ts : Set (TopologicalSpace E)}
(hts : ∀ t ∈ ts, PolynormableSpace 𝕜 E (topology := t)) :
PolynormableSpace 𝕜 E (topology := sInf ts) := by
rw [sInf_eq_iInf']
exact .iInf fun t ↦ hts t.1 t.2

theorem PolynormableSpace.inf {t₁ t₂ : TopologicalSpace E}
(ht₁ : PolynormableSpace 𝕜 E (topology := t₁))
(ht₂ : PolynormableSpace 𝕜 E (topology := t₂)) :
PolynormableSpace 𝕜 E (topology := t₁ ⊓ t₂) := by
rw [← sInf_pair]
exact .sInf (by simp [ht₁, ht₂])

theorem withSeminorms_pi {κ : ι → Type*} {E : ι → Type*}
[∀ i, AddCommGroup (E i)] [∀ i, Module 𝕜 (E i)] [∀ i, TopologicalSpace (E i)]
{p : (i : ι) → SeminormFamily 𝕜 (E i) (κ i)}
(hp : ∀ i, WithSeminorms (p i)) :
WithSeminorms (SeminormFamily.sigma (fun i ↦ (p i).comp (LinearMap.proj i))) :=
withSeminorms_iInf fun i ↦ (LinearMap.proj i).withSeminorms_induced (hp i)

instance {E : ι → Type*} [∀ i, AddCommGroup (E i)] [∀ i, Module 𝕜 (E i)]
[∀ i, TopologicalSpace (E i)] [∀ i, PolynormableSpace 𝕜 (E i)] :
PolynormableSpace 𝕜 (Π i, E i) :=
.iInf fun i ↦ .induced (LinearMap.proj (R := 𝕜) (φ := E) i)

instance {E₁ E₂ : Type*} [AddCommGroup E₁] [AddCommGroup E₂] [Module 𝕜 E₁] [Module 𝕜 E₂]
[TopologicalSpace E₁] [TopologicalSpace E₂] [PolynormableSpace 𝕜 E₁] [PolynormableSpace 𝕜 E₂] :
PolynormableSpace 𝕜 (E₁ × E₂) :=
.inf (.induced <| LinearMap.fst 𝕜 E₁ E₂) (.induced <| LinearMap.snd 𝕜 E₁ E₂)

end TopologicalConstructions

section TopologicalProperties
Expand Down
10 changes: 10 additions & 0 deletions Mathlib/Topology/Algebra/Module/LocallyConvex.lean
Original file line number Diff line number Diff line change
Expand Up @@ -197,6 +197,16 @@ protected theorem LocallyConvexSpace.induced {t : TopologicalSpace F} [LocallyCo
rw [nhds_induced]
exact (LocallyConvexSpace.convex_basis <| f x).comap f

theorem Topology.IsInducing.locallyConvexSpace [TopologicalSpace F] [LocallyConvexSpace 𝕜 F]
[TopologicalSpace E] {f : E →ₗ[𝕜] F} (hf : IsInducing f) :
LocallyConvexSpace 𝕜 E := by
rw [hf.eq_induced]
exact .induced f

instance [TopologicalSpace E] [LocallyConvexSpace 𝕜 E] {S : Submodule 𝕜 E} :
LocallyConvexSpace 𝕜 S :=
IsInducing.locallyConvexSpace (f := S.subtype) .subtypeVal

instance Pi.locallyConvexSpace {ι : Type*} {X : ι → Type*} [∀ i, AddCommMonoid (X i)]
[∀ i, TopologicalSpace (X i)] [∀ i, Module 𝕜 (X i)] [∀ i, LocallyConvexSpace 𝕜 (X i)] :
LocallyConvexSpace 𝕜 (∀ i, X i) :=
Expand Down
Loading