Skip to content
24 changes: 24 additions & 0 deletions tasks/egorova_l_gauss_filter_vert/common/include/common.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
#pragma once

#include <cstdint>
#include <string>
#include <tuple>
#include <vector>

#include "task/include/task.hpp"

namespace egorova_l_gauss_filter_vert {

struct Image {
int rows = 0;
int cols = 0;
int channels = 0;
std::vector<uint8_t> data;
};

using InType = Image;
using OutType = Image;
using TestType = std::tuple<int, int, int, std::string>;
using BaseTask = ppc::task::Task<InType, OutType>;

} // namespace egorova_l_gauss_filter_vert
9 changes: 9 additions & 0 deletions tasks/egorova_l_gauss_filter_vert/info.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
{
"student": {
"first_name": "Лариса",
"last_name": "Егорова",
"middle_name": "Алексеевна",
"group_number": "3823Б1ФИ1",
"task_number": "27"
}
}
23 changes: 23 additions & 0 deletions tasks/egorova_l_gauss_filter_vert/mpi/include/ops_mpi.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
#pragma once

#include "egorova_l_gauss_filter_vert/common/include/common.hpp"
#include "task/include/task.hpp"

namespace egorova_l_gauss_filter_vert {

class EgorovaLGaussFilterVertMPI : public BaseTask {
public:
static constexpr ppc::task::TypeOfTask GetStaticTypeOfTask() {
return ppc::task::TypeOfTask::kMPI;
}

explicit EgorovaLGaussFilterVertMPI(const InType &in);

private:
bool ValidationImpl() override;
bool PreProcessingImpl() override;
bool RunImpl() override;
bool PostProcessingImpl() override;
};

} // namespace egorova_l_gauss_filter_vert
313 changes: 313 additions & 0 deletions tasks/egorova_l_gauss_filter_vert/mpi/src/ops_mpi.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,313 @@
#include "egorova_l_gauss_filter_vert/mpi/include/ops_mpi.hpp"

#include <mpi.h>

#include <algorithm>
#include <array>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <vector>

#include "egorova_l_gauss_filter_vert/common/include/common.hpp"

namespace egorova_l_gauss_filter_vert {

namespace {

constexpr std::array<float, 9> kKernel = {0.0625F, 0.125F, 0.0625F, 0.125F, 0.25F, 0.125F, 0.0625F, 0.125F, 0.0625F};

void ApplyKernelToPixel(const std::vector<uint8_t> &local_in, int row_index, int col_index, int channel_index, int rows,
int local_cols_with_halo, int channels, int halo_left, double &sum) {
for (int kernel_row = -1; kernel_row <= 1; ++kernel_row) {
const int image_row = std::clamp(row_index + kernel_row, 0, rows - 1);
for (int kernel_col = -1; kernel_col <= 1; ++kernel_col) {
const int local_col_with_halo = col_index + halo_left + kernel_col;
const int clamped_local_col = std::clamp(local_col_with_halo, 0, local_cols_with_halo - 1);

const std::size_t pixel_index =
((static_cast<std::size_t>(image_row) * static_cast<std::size_t>(local_cols_with_halo) +
static_cast<std::size_t>(clamped_local_col)) *
static_cast<std::size_t>(channels)) +
static_cast<std::size_t>(channel_index);

const auto kernel_index =
(static_cast<std::size_t>(kernel_row + 1) * 3U) + static_cast<std::size_t>(kernel_col + 1);

sum += static_cast<double>(local_in[pixel_index]) * static_cast<double>(kKernel.at(kernel_index));
}
}
}

void ProcessRow(const std::vector<uint8_t> &local_in, std::vector<uint8_t> &local_out, int row_index, int rows,
int local_cols, int local_cols_with_halo, int channels, int halo_left) {
for (int col_index = 0; col_index < local_cols; ++col_index) {
for (int channel_index = 0; channel_index < channels; ++channel_index) {
double sum = 0.0;
ApplyKernelToPixel(local_in, row_index, col_index, channel_index, rows, local_cols_with_halo, channels, halo_left,
sum);

const std::size_t out_index = ((static_cast<std::size_t>(row_index) * static_cast<std::size_t>(local_cols) +
static_cast<std::size_t>(col_index)) *
static_cast<std::size_t>(channels)) +
static_cast<std::size_t>(channel_index);
local_out[out_index] = static_cast<uint8_t>(std::clamp(std::round(sum), 0.0, 255.0));
}
}
}

void ComputeLocalGaussWithHalo(const std::vector<uint8_t> &local_in_with_halo, std::vector<uint8_t> &local_out,
int rows, int local_cols, int local_cols_with_halo, int channels, int halo_left) {
if (local_cols <= 0) {
return;
}

for (int row_index = 0; row_index < rows; ++row_index) {
ProcessRow(local_in_with_halo, local_out, row_index, rows, local_cols, local_cols_with_halo, channels, halo_left);
}
}

void CopyMainDataToHaloBuffer(const std::vector<uint8_t> &local_data, std::vector<uint8_t> &local_data_with_halo,
int rows, int local_cols, int local_cols_with_halo, int channels, int halo_size) {
for (int row = 0; row < rows; ++row) {
for (int channel = 0; channel < channels; ++channel) {
for (int local_col = 0; local_col < local_cols; ++local_col) {
const std::size_t src_idx = ((row * local_cols + local_col) * channels) + channel;
const std::size_t dst_idx = ((row * local_cols_with_halo + (local_col + halo_size)) * channels) + channel;
local_data_with_halo[dst_idx] = local_data[src_idx];
}
}
}
}

void FillHaloBoundaries(std::vector<uint8_t> &local_data_with_halo, int rows, int local_cols, int local_cols_with_halo,
int channels, int halo_size) {
for (int row = 0; row < rows; ++row) {
for (int channel = 0; channel < channels; ++channel) {
const std::size_t left_idx = ((row * local_cols_with_halo + 0) * channels) + channel;
const std::size_t first_real_idx = ((row * local_cols_with_halo + halo_size) * channels) + channel;
const std::size_t right_idx = ((row * local_cols_with_halo + (local_cols_with_halo - 1)) * channels) + channel;
const std::size_t last_real_idx =
((row * local_cols_with_halo + (local_cols + halo_size - 1)) * channels) + channel;

local_data_with_halo[left_idx] = local_data_with_halo[first_real_idx];
local_data_with_halo[right_idx] = local_data_with_halo[last_real_idx];
}
}
}

std::vector<uint8_t> PrepareLocalDataWithHalo(const std::vector<uint8_t> &local_data, int rows, int local_cols,
int local_cols_with_halo, int channels, int halo_size) {
std::vector<uint8_t> local_data_with_halo(static_cast<std::size_t>(local_cols_with_halo) *
static_cast<std::size_t>(rows) * static_cast<std::size_t>(channels));

CopyMainDataToHaloBuffer(local_data, local_data_with_halo, rows, local_cols, local_cols_with_halo, channels,
halo_size);

FillHaloBoundaries(local_data_with_halo, rows, local_cols, local_cols_with_halo, channels, halo_size);

return local_data_with_halo;
}

void PrepareHaloForSending(const std::vector<uint8_t> &local_data_with_halo, std::vector<uint8_t> &send_left_halo,
std::vector<uint8_t> &send_right_halo, int rows, int local_cols, int local_cols_with_halo,
int channels, int halo_size) {
if (local_cols <= 0) {
return;
}

for (int row = 0; row < rows; ++row) {
for (int channel = 0; channel < channels; ++channel) {
const std::size_t src_left_idx = ((row * local_cols_with_halo + halo_size) * channels) + channel;
const std::size_t dst_left_idx = (row * channels) + channel;
send_left_halo[dst_left_idx] = local_data_with_halo[src_left_idx];

const std::size_t src_right_idx =
((row * local_cols_with_halo + (local_cols + halo_size - 1)) * channels) + channel;
const std::size_t dst_right_idx = (row * channels) + channel;
send_right_halo[dst_right_idx] = local_data_with_halo[src_right_idx];
}
}
}

void PerformHaloExchange(std::vector<uint8_t> &send_left_halo, std::vector<uint8_t> &send_right_halo,
std::vector<uint8_t> &recv_left_halo, std::vector<uint8_t> &recv_right_halo,
int halo_column_size, int rank, int size) {
const bool is_middle_process = rank > 0 && rank < size - 1;
const bool is_first_process = rank == 0 && size > 1;
const bool is_last_process = rank == size - 1 && size > 1;

if (is_middle_process) {
MPI_Sendrecv(send_left_halo.data(), halo_column_size, MPI_BYTE, rank - 1, 0, recv_right_halo.data(),
halo_column_size, MPI_BYTE, rank + 1, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Sendrecv(send_right_halo.data(), halo_column_size, MPI_BYTE, rank + 1, 0, recv_left_halo.data(),
halo_column_size, MPI_BYTE, rank - 1, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
} else if (is_first_process) {
MPI_Sendrecv(send_right_halo.data(), halo_column_size, MPI_BYTE, rank + 1, 0, recv_left_halo.data(),
halo_column_size, MPI_BYTE, rank + 1, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
} else if (is_last_process) {
MPI_Sendrecv(send_left_halo.data(), halo_column_size, MPI_BYTE, rank - 1, 0, recv_right_halo.data(),
halo_column_size, MPI_BYTE, rank - 1, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
}
}

void UpdateHaloZonesWithReceivedData(std::vector<uint8_t> &local_data_with_halo,
const std::vector<uint8_t> &recv_left_halo,
const std::vector<uint8_t> &recv_right_halo, int rows, int local_cols_with_halo,
int channels, int rank, int size) {
if (rank > 0) {
for (int row = 0; row < rows; ++row) {
for (int channel = 0; channel < channels; ++channel) {
const std::size_t dst_idx = ((row * local_cols_with_halo + 0) * channels) + channel;
const std::size_t src_idx = (row * channels) + channel;
local_data_with_halo[dst_idx] = recv_left_halo[src_idx];
}
}
}

if (rank < size - 1) {
for (int row = 0; row < rows; ++row) {
for (int channel = 0; channel < channels; ++channel) {
const std::size_t dst_idx = ((row * local_cols_with_halo + (local_cols_with_halo - 1)) * channels) + channel;
const std::size_t src_idx = (row * channels) + channel;
local_data_with_halo[dst_idx] = recv_right_halo[src_idx];
}
}
}
}

void ExchangeHaloZones(std::vector<uint8_t> &local_data_with_halo, int rows, int local_cols, int local_cols_with_halo,
int channels, int halo_size, int rank, int size) {
if (size <= 1) {
return;
}

const int halo_column_size = rows * channels;

std::vector<uint8_t> send_left_halo(halo_column_size);
std::vector<uint8_t> send_right_halo(halo_column_size);
std::vector<uint8_t> recv_left_halo(halo_column_size);
std::vector<uint8_t> recv_right_halo(halo_column_size);

PrepareHaloForSending(local_data_with_halo, send_left_halo, send_right_halo, rows, local_cols, local_cols_with_halo,
channels, halo_size);

PerformHaloExchange(send_left_halo, send_right_halo, recv_left_halo, recv_right_halo, halo_column_size, rank, size);

UpdateHaloZonesWithReceivedData(local_data_with_halo, recv_left_halo, recv_right_halo, rows, local_cols_with_halo,
channels, rank, size);
}

} // namespace

EgorovaLGaussFilterVertMPI::EgorovaLGaussFilterVertMPI(const InType &in) {
SetTypeOfTask(GetStaticTypeOfTask());
GetInput() = in;
}

bool EgorovaLGaussFilterVertMPI::ValidationImpl() {
const auto &input = GetInput();
return input.rows > 0 && input.cols > 0 && input.channels > 0 &&
input.data.size() == static_cast<std::size_t>(input.rows) * static_cast<std::size_t>(input.cols) *
static_cast<std::size_t>(input.channels);
}

bool EgorovaLGaussFilterVertMPI::PreProcessingImpl() {
return true;
}

bool EgorovaLGaussFilterVertMPI::RunImpl() {
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I don't see data scatter across the different franks (from 0 to other ranks)

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There is scatter not, but it does not implement vertical distribution

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Вроде как я исправила

int rank = 0;
int size = 0;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

int rows = 0;
int cols = 0;
int channels = 0;

if (rank == 0) {
rows = GetInput().rows;
cols = GetInput().cols;
channels = GetInput().channels;
}

MPI_Bcast(&rows, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Bcast(&cols, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Bcast(&channels, 1, MPI_INT, 0, MPI_COMM_WORLD);

const int cols_per_proc = cols / size;
const int remainder = cols % size;

std::vector<int> proc_cols_count(size);
std::vector<int> proc_start_col(size);

if (rank == 0) {
int current_col = 0;
for (int proc = 0; proc < size; ++proc) {
const bool gets_extra = proc < remainder;
proc_cols_count[proc] = gets_extra ? cols_per_proc + 1 : cols_per_proc;
proc_start_col[proc] = current_col;
current_col += proc_cols_count[proc];
}
}

MPI_Bcast(proc_cols_count.data(), size, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Bcast(proc_start_col.data(), size, MPI_INT, 0, MPI_COMM_WORLD);

const int local_cols = proc_cols_count[rank];

const int halo_size = 1;
const int local_cols_with_halo = local_cols + (2 * halo_size);
const int local_size = local_cols * rows * channels;

std::vector<int> send_counts(size);
std::vector<int> displacements(size);

if (rank == 0) {
int offset = 0;
for (int proc = 0; proc < size; ++proc) {
send_counts[proc] = proc_cols_count[proc] * rows * channels;
displacements[proc] = offset;
offset += send_counts[proc];
}
}

std::vector<uint8_t> local_data(local_size);
std::vector<uint8_t> local_out(local_size);

const uint8_t *send_buffer = rank == 0 ? GetInput().data.data() : nullptr;
MPI_Scatterv(send_buffer, send_counts.data(), displacements.data(), MPI_BYTE, local_data.data(), local_size, MPI_BYTE,
0, MPI_COMM_WORLD);

auto local_data_with_halo =
PrepareLocalDataWithHalo(local_data, rows, local_cols, local_cols_with_halo, channels, halo_size);

ExchangeHaloZones(local_data_with_halo, rows, local_cols, local_cols_with_halo, channels, halo_size, rank, size);

ComputeLocalGaussWithHalo(local_data_with_halo, local_out, rows, local_cols, local_cols_with_halo, channels,
halo_size);

auto &out = GetOutput();
out.rows = rows;
out.cols = cols;
out.channels = channels;

const std::size_t total_size =
static_cast<std::size_t>(rows) * static_cast<std::size_t>(cols) * static_cast<std::size_t>(channels);
out.data.resize(total_size);

MPI_Gatherv(local_out.data(), local_size, MPI_BYTE, out.data.data(), send_counts.data(), displacements.data(),
MPI_BYTE, 0, MPI_COMM_WORLD);

MPI_Bcast(out.data.data(), static_cast<int>(total_size), MPI_BYTE, 0, MPI_COMM_WORLD);

return true;
}

bool EgorovaLGaussFilterVertMPI::PostProcessingImpl() {
return true;
}

} // namespace egorova_l_gauss_filter_vert
Loading
Loading