This is a Machine Learning project to predict new frequencies values
To install required packages:
./scripts/install.sh
To execute the application run:
poetry run streamlit run src/main.py
Experiments: Conda Environment (conda_environment.yml)
notebook/
Script: Poetry (pyproject.toml)
src/
Data: DVC connected on AWS S3 Bucket (.dvc/)
dataset/
model/
The application is served by KNN models to predict the best value. The machine learning pipeline follow the best correlation from the input combination. E.g.: For the combination '2k' - '4k' - '6k' the most correlated is the '3k' and the next prediction.
Machine Learning Pipelines:
-
Comb: 2k-4k-6k -> 3k
-
Comb: 2k-4k-6k-1k -> 3k
Comb: 2k-4k-6k-3k -> 1k
Comb: 2k-4k-6k-8k -> 3k
Comb: 2k-4k-6k-500k -> 3k -
Comb: 2k-4k-6k-8k-3k -> 1k
Comb: 2k-4k-6k-1k-3k -> 500k
Comb: 2k-4k-6k-500k-3k -> 1k -
Comb: 2k-4k-6k-500k-3k-1k -> 8k
Comb: 2k-4k-6k-8k-3k-1k -> 500k
In order to run the notebooks run: Create a new conda environment and activate:
conda create -n cond_audio_env python=3.10
conda activate cond_audio_env
Install the required dependencies:
conda env update --file conda_environment.yml
Open Jupyter
jupyter-notebook