-
Notifications
You must be signed in to change notification settings - Fork 464
[NPU]: Add NPU support for the mrope operator #992
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
285 changes: 285 additions & 0 deletions
285
src/liger_kernel/ops/backends/_ascend/ops/qwen2vl_mrope.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,285 @@ | ||
| import torch | ||
| import triton | ||
| import triton.language as tl | ||
|
|
||
| from liger_kernel.ops.backends._ascend.ub_manager import compute_default_tiling_strategy | ||
|
|
||
|
|
||
| @triton.jit | ||
| def _triton_qwen2vl_mrope_npu( | ||
| q_ptr, | ||
| q_row_stride, | ||
| k_ptr, | ||
| k_row_stride, | ||
| cos, | ||
| sin, | ||
| sl, | ||
| bs: tl.constexpr, | ||
| n_qh: tl.constexpr, | ||
| n_kh: tl.constexpr, | ||
| hd: tl.constexpr, | ||
| mrope_section_t: tl.constexpr, | ||
| mrope_section_h: tl.constexpr, | ||
| BLOCK_Q: tl.constexpr, | ||
| BLOCK_K: tl.constexpr, | ||
| BACKWARD_PASS: tl.constexpr = False, | ||
| ): | ||
| pid = tl.program_id(0).to(tl.int64) | ||
|
|
||
| t_end = mrope_section_t | ||
| h_end = t_end + mrope_section_h | ||
|
|
||
| t_cos = cos + pid * hd | ||
| h_cos = t_cos + bs * sl * hd | ||
| w_cos = h_cos + bs * sl * hd | ||
| t_sin = sin + pid * hd | ||
| h_sin = t_sin + bs * sl * hd | ||
| w_sin = h_sin + bs * sl * hd | ||
|
|
||
| q_base = q_ptr + pid * q_row_stride | ||
| k_base = k_ptr + pid * k_row_stride | ||
|
|
||
| d_idx = tl.arange(0, hd // 2) | ||
| d_mask = d_idx < (hd // 2) | ||
|
|
||
| pos_mask_t = d_idx < t_end | ||
| pos_mask_h = (d_idx >= t_end) & (d_idx < h_end) | ||
|
|
||
| text_cos_vals = tl.load(t_cos + d_idx, mask=d_mask, other=0) | ||
| text_sin_vals = tl.load(t_sin + d_idx, mask=d_mask, other=0) | ||
| height_cos_vals = tl.load(h_cos + d_idx, mask=d_mask, other=0) | ||
| height_sin_vals = tl.load(h_sin + d_idx, mask=d_mask, other=0) | ||
| width_cos_vals = tl.load(w_cos + d_idx, mask=d_mask, other=0) | ||
| width_sin_vals = tl.load(w_sin + d_idx, mask=d_mask, other=0) | ||
|
|
||
| cos_vals = tl.where(pos_mask_t, text_cos_vals, tl.where(pos_mask_h, height_cos_vals, width_cos_vals)) | ||
| sin_vals = tl.where(pos_mask_t, text_sin_vals, tl.where(pos_mask_h, height_sin_vals, width_sin_vals)) | ||
|
|
||
| for qh_block in range(0, n_qh, BLOCK_Q): | ||
| qh_idx = tl.arange(0, BLOCK_Q) + qh_block | ||
| qh_mask = qh_idx < n_qh | ||
|
|
||
| block_mask = qh_mask[:, None] & d_mask[None, :] | ||
| offsets = qh_idx[:, None] * hd + d_idx[None, :] | ||
|
|
||
| q_left = tl.load(q_base + offsets, mask=block_mask, other=0) | ||
| q_right = tl.load(q_base + offsets + (hd // 2), mask=block_mask, other=0) | ||
|
|
||
| if not BACKWARD_PASS: | ||
| new_left = q_left * cos_vals - q_right * sin_vals | ||
| new_right = q_right * cos_vals + q_left * sin_vals | ||
| else: | ||
| new_left = q_left * cos_vals + q_right * sin_vals | ||
| new_right = q_right * cos_vals - q_left * sin_vals | ||
|
|
||
| tl.store(q_base + offsets, new_left, mask=block_mask) | ||
| tl.store(q_base + offsets + (hd // 2), new_right, mask=block_mask) | ||
|
|
||
| for kh_block in range(0, n_kh, BLOCK_K): | ||
| kh_idx = tl.arange(0, BLOCK_K) + kh_block | ||
| kh_mask = kh_idx < n_kh | ||
|
|
||
| block_mask = kh_mask[:, None] & d_mask[None, :] | ||
| offsets = kh_idx[:, None] * hd + d_idx[None, :] | ||
|
|
||
| k_left = tl.load(k_base + offsets, mask=block_mask, other=0) | ||
| k_right = tl.load(k_base + offsets + (hd // 2), mask=block_mask, other=0) | ||
|
|
||
| if not BACKWARD_PASS: | ||
| new_left = k_left * cos_vals - k_right * sin_vals | ||
| new_right = k_right * cos_vals + k_left * sin_vals | ||
| else: | ||
| new_left = k_left * cos_vals + k_right * sin_vals | ||
| new_right = k_right * cos_vals - k_left * sin_vals | ||
|
|
||
| tl.store(k_base + offsets, new_left, mask=block_mask) | ||
| tl.store(k_base + offsets + (hd // 2), new_right, mask=block_mask) | ||
|
|
||
|
|
||
| def qwen2vl_mrope_forward(q, k, cos, sin, mrope_section): | ||
| # transpose it back to the physical shape because Triton looks at the physical storage | ||
| # note: q and k are incontiguous before the transformation and will become contiguous after transpose | ||
| q = q.transpose(1, 2) | ||
| k = k.transpose(1, 2) | ||
|
|
||
| batch_size, seq_len, n_q_head, head_dim = q.shape | ||
| n_kv_head = k.shape[2] | ||
| pad_hd = triton.next_power_of_2(head_dim) | ||
| pad_n_q_head = triton.next_power_of_2(n_q_head) | ||
| pad_n_kv_head = triton.next_power_of_2(n_kv_head) | ||
|
|
||
| n_row = batch_size * seq_len | ||
|
|
||
| # ensure tensors passed into the kernel are contiguous. It will be no-op if they are already contiguous | ||
| q = q.contiguous() | ||
| k = k.contiguous() | ||
| cos = cos.contiguous() | ||
| sin = sin.contiguous() | ||
|
|
||
| # Compute tiling strategy based on UB capacity | ||
| dtype_size = q.element_size() | ||
| # MROPE forward tiling strategy: | ||
| # - cos_vals and sin_vals (include text, height and width) are loaded once outside loops (shared): (pad_hd // 2) * 4 = 2 * pad_hd elements each | ||
| # - In q heads loop (peak memory): | ||
| # * q_left: BLOCK_Q * (pad_hd // 2) elements | ||
| # * q_right: BLOCK_Q * (pad_hd // 2) elements | ||
| # * new_left: BLOCK_Q * (pad_hd // 2) elements (intermediate result) | ||
| # * new_right: BLOCK_Q * (pad_hd // 2) elements (intermediate result) | ||
| # * Total: 4 * BLOCK_Q * (pad_hd // 2) = 2 * BLOCK_Q * pad_hd elements | ||
| # - In k heads loop (peak memory): | ||
| # * k_left: BLOCK_K * (pad_hd // 2) elements | ||
| # * k_right: BLOCK_K * (pad_hd // 2) elements | ||
| # * new_left: BLOCK_K * (pad_hd // 2) elements (intermediate result) | ||
| # * new_right: BLOCK_K * (pad_hd // 2) elements (intermediate result) | ||
| # * Total: 4 * BLOCK_K * (pad_hd // 2) = 2 * BLOCK_K * pad_hd elements | ||
| # - Since q and k are processed separately, peak memory is max(BLOCK_Q, BLOCK_K) case | ||
| # - Plus shared cos/sin: 2 * (pad_hd // 2) = pad_hd elements | ||
| # - Conservative estimate: (2 * BLOCK_SIZE * pad_hd + pad_hd) * dtype_size * 8 bits | ||
| # - Simplified: (2 * BLOCK_SIZE + 2) * pad_hd * dtype_size * 8 bits | ||
| # - For safety, use: memory_multiplier=3.0 * BLOCK_SIZE * pad_hd * dtype_size * 8 bits | ||
| # - shapes: ((pad_n_q_head, pad_hd), (pad_n_kv_head, pad_hd)) | ||
| # - tiling_dims: (0, 0) means first dimension of each shape can be tiled | ||
| # - Returns: ((block_size_q, pad_hd), (block_size_kv, pad_hd)) | ||
| shapes = ((pad_n_q_head, pad_hd), (pad_n_kv_head, pad_hd)) | ||
| tile_shapes = compute_default_tiling_strategy( | ||
| safety_margin=0.90, | ||
| dtype_size=dtype_size, | ||
| memory_multiplier=3.0, | ||
| shapes=shapes, | ||
| tiling_dims=(0, 0), | ||
| ) | ||
|
|
||
| if tile_shapes is not None and len(tile_shapes) == len(shapes): | ||
| # Strategy returns ((block_size_q, pad_hd), (block_size_kv, pad_hd)) | ||
| q_tile_shape, k_tile_shape = tile_shapes | ||
| BLOCK_Q, _ = q_tile_shape | ||
| BLOCK_K, _ = k_tile_shape | ||
| else: | ||
| # Fallback to conservative defaults | ||
| BLOCK_Q = triton.next_power_of_2(pad_n_q_head) | ||
| BLOCK_K = triton.next_power_of_2(pad_n_kv_head) | ||
| _triton_qwen2vl_mrope_npu[(n_row,)]( | ||
| q, | ||
| q.stride(1), | ||
| k, | ||
| k.stride(1), | ||
| cos, | ||
| sin, | ||
| seq_len, | ||
| batch_size, | ||
| n_q_head, | ||
| n_kv_head, | ||
| head_dim, | ||
| mrope_section[0], | ||
| mrope_section[1], | ||
| BLOCK_Q, | ||
| BLOCK_K, | ||
| BACKWARD_PASS=False, | ||
| ) | ||
| return q.transpose(1, 2), k.transpose(1, 2), cos, sin | ||
|
|
||
|
|
||
| def qwen2vl_mrope_backward(dq, dk, cos, sin, mrope_section): | ||
| dq = dq.transpose(1, 2) | ||
| dk = dk.transpose(1, 2) | ||
|
|
||
| batch_size, seq_len, n_q_head, head_dim = dq.shape | ||
| n_kv_head = dk.shape[2] | ||
| pad_hd = triton.next_power_of_2(head_dim) | ||
| pad_n_q_head = triton.next_power_of_2(n_q_head) | ||
| pad_n_kv_head = triton.next_power_of_2(n_kv_head) | ||
|
|
||
| n_row = batch_size * seq_len | ||
|
|
||
| # ensure dq and dk are contiguous | ||
| dq = dq.contiguous() | ||
| dk = dk.contiguous() | ||
|
|
||
| # Compute tiling strategy based on UB capacity | ||
| dtype_size = dq.element_size() | ||
| # MROPE backward tiling strategy: | ||
| # - cos_vals and sin_vals (include text, height and width) are loaded once outside loops (shared): (pad_hd // 2) * 4 = 2 * pad_hd elements each | ||
| # - In q heads loop (peak memory): | ||
| # * q_left: BLOCK_Q * (pad_hd // 2) elements | ||
| # * q_right: BLOCK_Q * (pad_hd // 2) elements | ||
| # * new_left: BLOCK_Q * (pad_hd // 2) elements (intermediate result) | ||
| # * new_right: BLOCK_Q * (pad_hd // 2) elements (intermediate result) | ||
| # * Total: 4 * BLOCK_Q * (pad_hd // 2) = 2 * BLOCK_Q * pad_hd elements | ||
| # - In k heads loop (peak memory): | ||
| # * k_left: BLOCK_K * (pad_hd // 2) elements | ||
| # * k_right: BLOCK_K * (pad_hd // 2) elements | ||
| # * new_left: BLOCK_K * (pad_hd // 2) elements (intermediate result) | ||
| # * new_right: BLOCK_K * (pad_hd // 2) elements (intermediate result) | ||
| # * Total: 4 * BLOCK_K * (pad_hd // 2) = 2 * BLOCK_K * pad_hd elements | ||
| # - Since q and k are processed separately, peak memory is max(BLOCK_Q, BLOCK_K) case | ||
| # - Plus shared cos/sin: 2 * (pad_hd // 2) = pad_hd elements | ||
| # - Conservative estimate: (2 * BLOCK_SIZE * pad_hd + pad_hd) * dtype_size * 8 bits | ||
| # - Simplified: (2 * BLOCK_SIZE + 2) * pad_hd * dtype_size * 8 bits | ||
| # - For safety, use: memory_multiplier=3.0 * BLOCK_SIZE * pad_hd * dtype_size * 8 bits | ||
| # - shapes: ((pad_n_q_head, pad_hd), (pad_n_kv_head, pad_hd)) | ||
| # - tiling_dims: (0, 0) means first dimension of each shape can be tiled | ||
| # - Returns: ((block_size_q, pad_hd), (block_size_kv, pad_hd)) | ||
| shapes = ((pad_n_q_head, pad_hd), (pad_n_kv_head, pad_hd)) | ||
| tile_shapes = compute_default_tiling_strategy( | ||
| safety_margin=0.90, | ||
| dtype_size=dtype_size, | ||
| memory_multiplier=3.0, | ||
| shapes=shapes, | ||
| tiling_dims=(0, 0), | ||
| ) | ||
|
|
||
| if tile_shapes is not None and len(tile_shapes) == len(shapes): | ||
| # Strategy returns ((block_size_q, pad_hd), (block_size_kv, pad_hd)) | ||
| q_tile_shape, k_tile_shape = tile_shapes | ||
| BLOCK_Q, _ = q_tile_shape | ||
| BLOCK_K, _ = k_tile_shape | ||
| else: | ||
| # Fallback to conservative defaults | ||
| BLOCK_Q = triton.next_power_of_2(pad_n_q_head) | ||
| BLOCK_K = triton.next_power_of_2(pad_n_kv_head) | ||
| _triton_qwen2vl_mrope_npu[(n_row,)]( | ||
| dq, | ||
| dq.stride(1), | ||
| dk, | ||
| dk.stride(1), | ||
| cos, | ||
| sin, | ||
| seq_len, | ||
| batch_size, | ||
| n_q_head, | ||
| n_kv_head, | ||
| head_dim, | ||
| mrope_section[0], | ||
| mrope_section[1], | ||
| BLOCK_Q, | ||
| BLOCK_K, | ||
| BACKWARD_PASS=True, | ||
| ) | ||
| return dq.transpose(1, 2), dk.transpose(1, 2) | ||
|
|
||
|
|
||
| class LigerQwen2VLMRopeFunction(torch.autograd.Function): | ||
| @staticmethod | ||
| def forward(ctx, q, k, cos, sin, mrope_section, unsqueeze_dim=1): | ||
| """ | ||
| q size: (bsz, n_q_head, seq_len, head_dim) | ||
| k size: (bsz, n_kv_head, seq_len, head_dim) | ||
| cos size: (3, bsz, seq_len, head_dim) | ||
| sin size: (3, bsz, seq_len, head_dim) | ||
| """ | ||
| q, k, cos, sin = qwen2vl_mrope_forward(q, k, cos, sin, mrope_section) | ||
| ctx.save_for_backward(cos, sin) | ||
| ctx.mrope_section = mrope_section | ||
| return q, k | ||
|
|
||
| def backward(ctx, dq, dk): | ||
| """ | ||
| dq size: (bsz, n_q_head, seq_len, head_dim) | ||
| dk size: (bsz, n_kv_head, seq_len, head_dim) | ||
| cos size: (3, bsz, seq_len, head_dim) | ||
| sin size: (3, bsz, seq_len, head_dim) | ||
| """ | ||
| cos, sin = ctx.saved_tensors | ||
| mrope_section = ctx.mrope_section | ||
| dq, dk = qwen2vl_mrope_backward(dq, dk, cos, sin, mrope_section) | ||
| return dq, dk, None, None, None, None | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.