Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -58,11 +58,13 @@ struct CUFComputeSharedMemoryOffsetsAndSize
auto gpuMod = cuf::getOrCreateGPUModule(mod, symTab);
mlir::Type i8Ty = builder.getI8Type();
mlir::Type i32Ty = builder.getI32Type();
mlir::Type idxTy = builder.getIndexType();
for (auto funcOp : gpuMod.getOps<mlir::gpu::GPUFuncOp>()) {
unsigned nbDynamicSharedVariables = 0;
unsigned nbStaticSharedVariables = 0;
uint64_t sharedMemSize = 0;
unsigned short alignment = 0;
mlir::Value crtDynOffset;

// Go over each shared memory operation and compute their start offset and
// the size and alignment of the global to be generated if all variables
Expand All @@ -73,16 +75,30 @@ struct CUFComputeSharedMemoryOffsetsAndSize
builder.setInsertionPoint(sharedOp);
if (fir::hasDynamicSize(sharedOp.getInType())) {
mlir::Type ty = sharedOp.getInType();
// getTypeSizeAndAlignmentOrCrash will crash trying to compute the
// size of an array with dynamic size. Just get the alignment to
// create the global.
if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(ty))
ty = seqTy.getEleTy();
unsigned short align = dl->getTypeABIAlignment(ty);
++nbDynamicSharedVariables;
mlir::Value zero = builder.createIntegerConstant(loc, i32Ty, 0);
sharedOp.getOffsetMutable().assign(zero);
alignment = std::max(alignment, align);
uint64_t tySize = dl->getTypeSize(ty);
++nbDynamicSharedVariables;
if (crtDynOffset) {
sharedOp.getOffsetMutable().assign(
builder.createConvert(loc, i32Ty, crtDynOffset));
} else {
mlir::Value zero = builder.createIntegerConstant(loc, i32Ty, 0);
sharedOp.getOffsetMutable().assign(zero);
}

mlir::Value dynSize =
builder.createIntegerConstant(loc, idxTy, tySize);
for (auto extent : sharedOp.getShape())
dynSize = builder.create<mlir::arith::MulIOp>(loc, dynSize, extent);
if (crtDynOffset)
crtDynOffset =
builder.create<mlir::arith::AddIOp>(loc, crtDynOffset, dynSize);
else
crtDynOffset = dynSize;

continue;
}
auto [size, align] = fir::getTypeSizeAndAlignmentOrCrash(
Expand Down
53 changes: 53 additions & 0 deletions flang/test/Fir/CUDA/cuda-shared-offset.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -54,3 +54,56 @@ module attributes {dlti.dl_spec = #dlti.dl_spec<#dlti.dl_entry<!llvm.ptr, dense<
// CHECK: fir.global internal @_QPshared_static__shared_mem(dense<0> : vector<28xi8>) {alignment = 8 : i64, data_attr = #cuf.cuda<shared>} : !fir.array<28xi8>
// CHECK: }
// CHECK: }

// -----

module attributes {dlti.dl_spec = #dlti.dl_spec<#dlti.dl_entry<!llvm.ptr, dense<64> : vector<4xi64>>, #dlti.dl_entry<!llvm.ptr<271>, dense<32> : vector<4xi64>>, #dlti.dl_entry<!llvm.ptr<270>, dense<32> : vector<4xi64>>, #dlti.dl_entry<f128, dense<128> : vector<2xi64>>, #dlti.dl_entry<f64, dense<64> : vector<2xi64>>, #dlti.dl_entry<f80, dense<128> : vector<2xi64>>, #dlti.dl_entry<f16, dense<16> : vector<2xi64>>, #dlti.dl_entry<i32, dense<32> : vector<2xi64>>, #dlti.dl_entry<i16, dense<16> : vector<2xi64>>, #dlti.dl_entry<i128, dense<128> : vector<2xi64>>, #dlti.dl_entry<i8, dense<8> : vector<2xi64>>, #dlti.dl_entry<!llvm.ptr<272>, dense<64> : vector<4xi64>>, #dlti.dl_entry<i64, dense<64> : vector<2xi64>>, #dlti.dl_entry<i1, dense<8> : vector<2xi64>>, #dlti.dl_entry<"dlti.endianness", "little">, #dlti.dl_entry<"dlti.stack_alignment", 128 : i64>>, fir.defaultkind = "a1c4d8i4l4r4", fir.kindmap = "", gpu.container_module, llvm.data_layout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-i128:128-f80:128-n8:16:32:64-S128", llvm.ident = "flang version 20.0.0 (https://github.com/llvm/llvm-project.git cae351f3453a0a26ec8eb2ddaf773c24a29d929e)", llvm.target_triple = "x86_64-unknown-linux-gnu"} {
gpu.module @cuda_device_mod {
gpu.func @_QMmPshareddyn(%arg0: !fir.box<!fir.array<?x?xi32>> {cuf.data_attr = #cuf.cuda<device>, fir.bindc_name = "a"}, %arg1: !fir.box<!fir.array<?x?xi32>> {cuf.data_attr = #cuf.cuda<device>, fir.bindc_name = "b"}, %arg2: i32 {fir.bindc_name = "k"}) attributes {cuf.proc_attr = #cuf.cuda_proc<global>} {
%c1_i32 = arith.constant 1 : i32
%c2_i32 = arith.constant 2 : i32
%c0 = arith.constant 0 : index
%5 = fir.address_of(@_QM__fortran_builtinsE__builtin_blockdim) : !fir.ref<!fir.type<_QM__fortran_builtinsT__builtin_dim3{x:i32,y:i32,z:i32}>>
%6 = fir.declare %5 {uniq_name = "_QM__fortran_builtinsE__builtin_blockdim"} : (!fir.ref<!fir.type<_QM__fortran_builtinsT__builtin_dim3{x:i32,y:i32,z:i32}>>) -> !fir.ref<!fir.type<_QM__fortran_builtinsT__builtin_dim3{x:i32,y:i32,z:i32}>>
%15 = fir.alloca i32
%16 = fir.declare %15 {fortran_attrs = #fir.var_attrs<value>, uniq_name = "_QMmFss1Ek"} : (!fir.ref<i32>) -> !fir.ref<i32>
%27 = fir.coordinate_of %6, x : (!fir.ref<!fir.type<_QM__fortran_builtinsT__builtin_dim3{x:i32,y:i32,z:i32}>>) -> !fir.ref<i32>
%28 = fir.load %27 : !fir.ref<i32>
%29 = fir.convert %28 : (i32) -> i64
%30 = fir.convert %29 : (i64) -> index
%31 = arith.cmpi sgt, %30, %c0 : index
%32 = arith.select %31, %30, %c0 : index
%33 = fir.coordinate_of %6, y : (!fir.ref<!fir.type<_QM__fortran_builtinsT__builtin_dim3{x:i32,y:i32,z:i32}>>) -> !fir.ref<i32>
%34 = fir.load %33 : !fir.ref<i32>
%35 = fir.convert %34 : (i32) -> i64
%36 = fir.convert %35 : (i64) -> index
%37 = arith.cmpi sgt, %36, %c0 : index
%38 = arith.select %37, %36, %c0 : index
%39 = cuf.shared_memory !fir.array<?x?xi32>, %32, %38 : index, index {bindc_name = "s1", uniq_name = "_QMmFss1Es1"} -> !fir.ref<!fir.array<?x?xi32>>
%40 = fir.shape %32, %38 : (index, index) -> !fir.shape<2>
%41 = fir.declare %39(%40) {data_attr = #cuf.cuda<shared>, uniq_name = "_QMmFss1Es1"} : (!fir.ref<!fir.array<?x?xi32>>, !fir.shape<2>) -> !fir.ref<!fir.array<?x?xi32>>
%42 = fir.load %16 : !fir.ref<i32>
%43 = arith.muli %42, %c2_i32 : i32
%44 = fir.convert %43 : (i32) -> i64
%45 = fir.convert %44 : (i64) -> index
%46 = arith.cmpi sgt, %45, %c0 : index
%47 = arith.select %46, %45, %c0 : index
%48 = fir.load %16 : !fir.ref<i32>
%49 = fir.convert %48 : (i32) -> i64
%50 = fir.convert %49 : (i64) -> index
%51 = arith.cmpi sgt, %50, %c0 : index
%52 = arith.select %51, %50, %c0 : index
%53 = cuf.shared_memory !fir.array<?x?xi32>, %47, %52 : index, index {bindc_name = "s2", uniq_name = "_QMmFss1Es2"} -> !fir.ref<!fir.array<?x?xi32>>
gpu.return
}
}
}

// CHECK: gpu.func @_QMmPshareddyn(%arg0: !fir.box<!fir.array<?x?xi32>> {cuf.data_attr = #cuf.cuda<device>, fir.bindc_name = "a"}, %arg1: !fir.box<!fir.array<?x?xi32>> {cuf.data_attr = #cuf.cuda<device>, fir.bindc_name = "b"}, %arg2: i32 {fir.bindc_name = "k"}) attributes {cuf.proc_attr = #cuf.cuda_proc<global>} {
// CHECK: %[[EXTENT0:.*]] = arith.select
// CHECK: %[[EXTENT1:.*]] = arith.select
// CHECK: %[[SIZE_EXTENT:.*]] = arith.muli %c4{{.*}}, %[[EXTENT0]] : index
// CHECK: %[[DYNSIZE:.*]] = arith.muli %[[SIZE_EXTENT]], %[[EXTENT1]] : index
// CHECK: cuf.shared_memory[%c0{{.*}} : i32] !fir.array<?x?xi32>, %9, %15 : index, index {bindc_name = "s1", uniq_name = "_QMmFss1Es1"} -> !fir.ref<!fir.array<?x?xi32>>
// CHECK: %[[CONV_DYNSIZE:.*]] = fir.convert %[[DYNSIZE]] : (index) -> i32
// CHECK: cuf.shared_memory[%[[CONV_DYNSIZE]] : i32] !fir.array<?x?xi32>, %26, %31 : index, index {bindc_name = "s2", uniq_name = "_QMmFss1Es2"} -> !fir.ref<!fir.array<?x?xi32>>