Skip to content
Closed
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions llvm/docs/AMDGPUUsage.rst
Original file line number Diff line number Diff line change
Expand Up @@ -1347,6 +1347,7 @@ The AMDGPU backend implements the following LLVM IR intrinsics.
- 0x0100: All DS read instructions may be scheduled accoss sched_barrier.
- 0x0200: All DS write instructions may be scheduled across sched_barrier.
- 0x0400: All Transcendental (e.g. V_EXP) instructions may be scheduled across sched_barrier.
- 0x0800: All Packed Arithmetic (e.g. V_PK_MOV, V_DOT, etc) instructions may be scheduled across sched_barrier.

llvm.amdgcn.sched.group.barrier Creates schedule groups with specific properties to create custom scheduling
pipelines. The ordering between groups is enforced by the instruction scheduler.
Expand Down
20 changes: 14 additions & 6 deletions llvm/lib/Target/AMDGPU/AMDGPUIGroupLP.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -75,8 +75,9 @@ enum class SchedGroupMask {
DS_READ = 1u << 8,
DS_WRITE = 1u << 9,
TRANS = 1u << 10,
PACK = 1u << 11,
ALL = ALU | VALU | SALU | MFMA | VMEM | VMEM_READ | VMEM_WRITE | DS |
DS_READ | DS_WRITE | TRANS,
DS_READ | DS_WRITE | TRANS | PACK,
LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ ALL)
};

Expand Down Expand Up @@ -2414,7 +2415,8 @@ bool SchedGroup::canAddMI(const MachineInstr &MI) const {
Result = true;

else if (((SGMask & SchedGroupMask::VALU) != SchedGroupMask::NONE) &&
TII->isVALU(MI) && !TII->isMFMAorWMMA(MI) && !TII->isTRANS(MI))
TII->isVALU(MI) && !TII->isMFMAorWMMA(MI) && !TII->isTRANS(MI) &&
!TII->isVOP3P(MI))
Result = true;

else if (((SGMask & SchedGroupMask::SALU) != SchedGroupMask::NONE) &&
Expand Down Expand Up @@ -2455,6 +2457,10 @@ bool SchedGroup::canAddMI(const MachineInstr &MI) const {
TII->isTRANS(MI))
Result = true;

else if (((SGMask & SchedGroupMask::PACK) != SchedGroupMask::NONE) &&
TII->isVOP3P(MI) && !TII->isMFMAorWMMA(MI))
Result = true;

LLVM_DEBUG(
dbgs() << "For SchedGroup with mask " << format_hex((int)SGMask, 10, true)
<< (Result ? " could classify " : " unable to classify ") << MI);
Expand Down Expand Up @@ -2634,15 +2640,17 @@ IGroupLPDAGMutation::invertSchedBarrierMask(SchedGroupMask Mask) const {
// allowed past the SCHED_BARRIER.
SchedGroupMask InvertedMask = ~Mask;

// ALU implies VALU, SALU, MFMA, TRANS.
// ALU implies VALU, SALU, MFMA, TRANS, PACK.
if ((InvertedMask & SchedGroupMask::ALU) == SchedGroupMask::NONE)
InvertedMask &= ~SchedGroupMask::VALU & ~SchedGroupMask::SALU &
~SchedGroupMask::MFMA & ~SchedGroupMask::TRANS;
// VALU, SALU, MFMA, TRANS implies ALU.
~SchedGroupMask::MFMA & ~SchedGroupMask::TRANS &
~SchedGroupMask::PACK;
// VALU, SALU, MFMA, TRANS, PACK implies ALU.
else if ((InvertedMask & SchedGroupMask::VALU) == SchedGroupMask::NONE ||
(InvertedMask & SchedGroupMask::SALU) == SchedGroupMask::NONE ||
(InvertedMask & SchedGroupMask::MFMA) == SchedGroupMask::NONE ||
(InvertedMask & SchedGroupMask::TRANS) == SchedGroupMask::NONE)
(InvertedMask & SchedGroupMask::TRANS) == SchedGroupMask::NONE ||
(InvertedMask & SchedGroupMask::PACK) == SchedGroupMask::NONE)
InvertedMask &= ~SchedGroupMask::ALU;

// VMEM implies VMEM_READ, VMEM_WRITE.
Expand Down
183 changes: 183 additions & 0 deletions llvm/test/CodeGen/AMDGPU/llvm.amdgcn.sched.group.barrier.ll
Original file line number Diff line number Diff line change
Expand Up @@ -1625,6 +1625,189 @@ entry:
ret void
}


define amdgpu_kernel void @test_sched_group_barrier_pipeline_interleave_PACK_MFMA(ptr addrspace(3) noalias %in, ptr addrspace(3) noalias %out, ptr addrspace(3) noalias %in1) #0 {
; GCN-LABEL: test_sched_group_barrier_pipeline_interleave_PACK_MFMA:
; GCN: ; %bb.0: ; %entry
; GCN-NEXT: s_load_dwordx2 s[0:1], s[4:5], 0x24
; GCN-NEXT: v_and_b32_e32 v6, 0x3ff, v0
; GCN-NEXT: v_lshlrev_b32_e32 v8, 7, v6
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: v_add_u32_e32 v7, s0, v8
; GCN-NEXT: s_movk_i32 s0, 0xff88
; GCN-NEXT: v_mad_i32_i24 v9, v6, s0, v7
; GCN-NEXT: ds_read2st64_b64 v[0:3], v9 offset1:1
; GCN-NEXT: ds_read_b64 v[4:5], v9 offset:5120
; GCN-NEXT: ds_read_b128 a[28:31], v7 offset:112
; GCN-NEXT: ds_read_b128 a[24:27], v7 offset:96
; GCN-NEXT: ds_read_b128 a[20:23], v7 offset:80
; GCN-NEXT: ds_read_b128 a[16:19], v7 offset:64
; GCN-NEXT: ds_read_b128 a[0:3], v7
; GCN-NEXT: ds_read_b128 a[4:7], v7 offset:16
; GCN-NEXT: ds_read_b128 a[8:11], v7 offset:32
; GCN-NEXT: ds_read_b128 a[12:15], v7 offset:48
; GCN-NEXT: s_waitcnt lgkmcnt(8)
; GCN-NEXT: v_pk_fma_f32 v[0:1], v[0:1], v[4:5], 0 op_sel_hi:[1,1,0]
; GCN-NEXT: v_add_u32_e32 v4, 0xc00, v9
; GCN-NEXT: v_lshl_add_u32 v10, v6, 3, v4
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: v_mfma_f32_32x32x1f32 a[0:31], v0, v1, a[0:31]
; GCN-NEXT: ds_read2st64_b64 v[4:7], v10 offset0:4 offset1:5
; GCN-NEXT: ; sched_group_barrier mask(0x00000800) size(1) SyncID(0)
; GCN-NEXT: ; sched_group_barrier mask(0x00000008) size(1) SyncID(0)
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: v_pk_fma_f32 v[4:5], v[2:3], v[4:5], v[0:1]
; GCN-NEXT: ds_read2st64_b64 v[0:3], v9 offset0:3 offset1:6
; GCN-NEXT: ; sched_group_barrier mask(0x00000800) size(1) SyncID(0)
; GCN-NEXT: s_nop 0
; GCN-NEXT: v_mfma_f32_32x32x1f32 a[0:31], v4, v5, a[0:31]
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: v_pk_fma_f32 v[0:1], v[0:1], v[6:7], v[4:5]
; GCN-NEXT: ds_read_b64 v[4:5], v10 offset:3584
; GCN-NEXT: ; sched_group_barrier mask(0x00000008) size(1) SyncID(0)
; GCN-NEXT: ; sched_group_barrier mask(0x00000800) size(1) SyncID(0)
; GCN-NEXT: s_nop 0
; GCN-NEXT: v_mfma_f32_32x32x1f32 a[0:31], v0, v1, a[0:31]
; GCN-NEXT: s_waitcnt lgkmcnt(0)
; GCN-NEXT: v_pk_fma_f32 v[0:1], v[2:3], v[4:5], v[0:1]
; GCN-NEXT: ; sched_group_barrier mask(0x00000008) size(1) SyncID(0)
; GCN-NEXT: ; sched_group_barrier mask(0x00000800) size(1) SyncID(0)
; GCN-NEXT: s_nop 1
; GCN-NEXT: v_mfma_f32_32x32x1f32 a[0:31], v0, v1, a[0:31]
; GCN-NEXT: v_add_u32_e32 v0, s1, v8
; GCN-NEXT: ; sched_group_barrier mask(0x00000008) size(1) SyncID(0)
; GCN-NEXT: s_nop 7
; GCN-NEXT: s_nop 7
; GCN-NEXT: s_nop 1
; GCN-NEXT: ds_write_b128 v0, a[28:31] offset:112
; GCN-NEXT: ds_write_b128 v0, a[24:27] offset:96
; GCN-NEXT: ds_write_b128 v0, a[20:23] offset:80
; GCN-NEXT: ds_write_b128 v0, a[16:19] offset:64
; GCN-NEXT: ds_write_b128 v0, a[12:15] offset:48
; GCN-NEXT: ds_write_b128 v0, a[8:11] offset:32
; GCN-NEXT: ds_write_b128 v0, a[4:7] offset:16
; GCN-NEXT: ds_write_b128 v0, a[0:3]
; GCN-NEXT: s_endpgm
;
; EXACTCUTOFF-LABEL: test_sched_group_barrier_pipeline_interleave_PACK_MFMA:
; EXACTCUTOFF: ; %bb.0: ; %entry
; EXACTCUTOFF-NEXT: s_load_dwordx2 s[0:1], s[4:5], 0x24
; EXACTCUTOFF-NEXT: v_and_b32_e32 v6, 0x3ff, v0
; EXACTCUTOFF-NEXT: v_lshlrev_b32_e32 v8, 7, v6
; EXACTCUTOFF-NEXT: s_waitcnt lgkmcnt(0)
; EXACTCUTOFF-NEXT: v_add_u32_e32 v7, s0, v8
; EXACTCUTOFF-NEXT: s_movk_i32 s0, 0xff88
; EXACTCUTOFF-NEXT: v_mad_i32_i24 v9, v6, s0, v7
; EXACTCUTOFF-NEXT: ds_read2st64_b64 v[0:3], v9 offset1:1
; EXACTCUTOFF-NEXT: ds_read_b64 v[4:5], v9 offset:5120
; EXACTCUTOFF-NEXT: ds_read_b128 a[28:31], v7 offset:112
; EXACTCUTOFF-NEXT: ds_read_b128 a[24:27], v7 offset:96
; EXACTCUTOFF-NEXT: ds_read_b128 a[20:23], v7 offset:80
; EXACTCUTOFF-NEXT: ds_read_b128 a[16:19], v7 offset:64
; EXACTCUTOFF-NEXT: ds_read_b128 a[0:3], v7
; EXACTCUTOFF-NEXT: ds_read_b128 a[4:7], v7 offset:16
; EXACTCUTOFF-NEXT: ds_read_b128 a[8:11], v7 offset:32
; EXACTCUTOFF-NEXT: ds_read_b128 a[12:15], v7 offset:48
; EXACTCUTOFF-NEXT: s_waitcnt lgkmcnt(8)
; EXACTCUTOFF-NEXT: v_pk_fma_f32 v[0:1], v[0:1], v[4:5], 0 op_sel_hi:[1,1,0]
; EXACTCUTOFF-NEXT: v_add_u32_e32 v4, 0xc00, v9
; EXACTCUTOFF-NEXT: v_lshl_add_u32 v10, v6, 3, v4
; EXACTCUTOFF-NEXT: s_waitcnt lgkmcnt(0)
; EXACTCUTOFF-NEXT: v_mfma_f32_32x32x1f32 a[0:31], v0, v1, a[0:31]
; EXACTCUTOFF-NEXT: ds_read2st64_b64 v[4:7], v10 offset0:4 offset1:5
; EXACTCUTOFF-NEXT: ; sched_group_barrier mask(0x00000800) size(1) SyncID(0)
; EXACTCUTOFF-NEXT: ; sched_group_barrier mask(0x00000008) size(1) SyncID(0)
; EXACTCUTOFF-NEXT: s_waitcnt lgkmcnt(0)
; EXACTCUTOFF-NEXT: v_pk_fma_f32 v[4:5], v[2:3], v[4:5], v[0:1]
; EXACTCUTOFF-NEXT: ds_read2st64_b64 v[0:3], v9 offset0:3 offset1:6
; EXACTCUTOFF-NEXT: ; sched_group_barrier mask(0x00000800) size(1) SyncID(0)
; EXACTCUTOFF-NEXT: s_nop 0
; EXACTCUTOFF-NEXT: v_mfma_f32_32x32x1f32 a[0:31], v4, v5, a[0:31]
; EXACTCUTOFF-NEXT: s_waitcnt lgkmcnt(0)
; EXACTCUTOFF-NEXT: v_pk_fma_f32 v[0:1], v[0:1], v[6:7], v[4:5]
; EXACTCUTOFF-NEXT: ds_read_b64 v[4:5], v10 offset:3584
; EXACTCUTOFF-NEXT: ; sched_group_barrier mask(0x00000008) size(1) SyncID(0)
; EXACTCUTOFF-NEXT: ; sched_group_barrier mask(0x00000800) size(1) SyncID(0)
; EXACTCUTOFF-NEXT: s_nop 0
; EXACTCUTOFF-NEXT: v_mfma_f32_32x32x1f32 a[0:31], v0, v1, a[0:31]
; EXACTCUTOFF-NEXT: s_waitcnt lgkmcnt(0)
; EXACTCUTOFF-NEXT: v_pk_fma_f32 v[0:1], v[2:3], v[4:5], v[0:1]
; EXACTCUTOFF-NEXT: ; sched_group_barrier mask(0x00000008) size(1) SyncID(0)
; EXACTCUTOFF-NEXT: ; sched_group_barrier mask(0x00000800) size(1) SyncID(0)
; EXACTCUTOFF-NEXT: s_nop 1
; EXACTCUTOFF-NEXT: v_mfma_f32_32x32x1f32 a[0:31], v0, v1, a[0:31]
; EXACTCUTOFF-NEXT: v_add_u32_e32 v0, s1, v8
; EXACTCUTOFF-NEXT: ; sched_group_barrier mask(0x00000008) size(1) SyncID(0)
; EXACTCUTOFF-NEXT: s_nop 7
; EXACTCUTOFF-NEXT: s_nop 7
; EXACTCUTOFF-NEXT: s_nop 1
; EXACTCUTOFF-NEXT: ds_write_b128 v0, a[28:31] offset:112
; EXACTCUTOFF-NEXT: ds_write_b128 v0, a[24:27] offset:96
; EXACTCUTOFF-NEXT: ds_write_b128 v0, a[20:23] offset:80
; EXACTCUTOFF-NEXT: ds_write_b128 v0, a[16:19] offset:64
; EXACTCUTOFF-NEXT: ds_write_b128 v0, a[12:15] offset:48
; EXACTCUTOFF-NEXT: ds_write_b128 v0, a[8:11] offset:32
; EXACTCUTOFF-NEXT: ds_write_b128 v0, a[4:7] offset:16
; EXACTCUTOFF-NEXT: ds_write_b128 v0, a[0:3]
; EXACTCUTOFF-NEXT: s_endpgm
entry:
%idx = call i32 @llvm.amdgcn.workitem.id.x()
%load.0.addr = getelementptr <32 x float>, ptr addrspace(3) %in, i32 %idx
%load.0 = load <32 x float>, ptr addrspace(3) %load.0.addr
%el.0.addr = getelementptr <2 x float>, ptr addrspace(3) %in, i32 %idx
%el.0 = load <2 x float>, ptr addrspace(3) %el.0.addr
%el.1.addr = getelementptr <2 x float>, ptr addrspace(3) %el.0.addr, i32 64
%el.1 = load <2 x float>, ptr addrspace(3) %el.1.addr
%el.2.addr = getelementptr <2 x float>, ptr addrspace(3) %el.1.addr, i32 128
%el.2 = load <2 x float>, ptr addrspace(3) %el.2.addr
%el.3.addr = getelementptr <2 x float>, ptr addrspace(3) %el.2.addr, i32 192
%el.3 = load <2 x float>, ptr addrspace(3) %el.3.addr
%el.4.addr = getelementptr <2 x float>, ptr addrspace(3) %el.3.addr, i32 256
%el.4 = load <2 x float>, ptr addrspace(3) %el.4.addr
%el.5.addr = getelementptr <2 x float>, ptr addrspace(3) %el.4.addr, i32 %idx
%el.5 = load <2 x float>, ptr addrspace(3) %el.5.addr
%el.6.addr = getelementptr <2 x float>, ptr addrspace(3) %el.5.addr, i32 64
%el.6 = load <2 x float>, ptr addrspace(3) %el.6.addr
%el.7.addr = getelementptr <2 x float>, ptr addrspace(3) %el.6.addr, i32 128
%el.7 = load <2 x float>, ptr addrspace(3) %el.7.addr
%v0 = tail call contract <2 x float> @llvm.fma.v2f32(<2 x float> %el.0, <2 x float> %el.4, <2 x float> <float 0.0, float 0.0>)
%v1 = tail call contract <2 x float> @llvm.fma.v2f32(<2 x float> %el.1, <2 x float> %el.5, <2 x float> %v0)
%v2 = tail call contract <2 x float> @llvm.fma.v2f32(<2 x float> %el.2, <2 x float> %el.6, <2 x float> %v1)
%v3 = tail call contract <2 x float> @llvm.fma.v2f32(<2 x float> %el.3, <2 x float> %el.7, <2 x float> %v2)
%op0 = extractelement <2 x float> %v0, i32 0
%op1 = extractelement <2 x float> %v0, i32 1
%op2 = extractelement <2 x float> %v1, i32 0
%op3 = extractelement <2 x float> %v1, i32 1
%op4 = extractelement <2 x float> %v2, i32 0
%op5 = extractelement <2 x float> %v2, i32 1
%op6 = extractelement <2 x float> %v3, i32 0
%op7 = extractelement <2 x float> %v3, i32 1
%mai.0 = tail call <32 x float> @llvm.amdgcn.mfma.f32.32x32x1f32(float %op0, float %op1, <32 x float> %load.0, i32 0, i32 0, i32 0)
%mai.1 = tail call <32 x float> @llvm.amdgcn.mfma.f32.32x32x1f32(float %op2, float %op3, <32 x float> %mai.0, i32 0, i32 0, i32 0)
%mai.2 = tail call <32 x float> @llvm.amdgcn.mfma.f32.32x32x1f32(float %op4, float %op5, <32 x float> %mai.1, i32 0, i32 0, i32 0)
%mai.3 = tail call <32 x float> @llvm.amdgcn.mfma.f32.32x32x1f32(float %op6, float %op7, <32 x float> %mai.2, i32 0, i32 0, i32 0)
; 1 PACK
call void @llvm.amdgcn.sched.group.barrier(i32 2048, i32 1, i32 0)
; 1 MFMA
call void @llvm.amdgcn.sched.group.barrier(i32 8, i32 1, i32 0)
; 1 PACK
call void @llvm.amdgcn.sched.group.barrier(i32 2048, i32 1, i32 0)
; 1 MFMA
call void @llvm.amdgcn.sched.group.barrier(i32 8, i32 1, i32 0)
; 1 PACK
call void @llvm.amdgcn.sched.group.barrier(i32 2048, i32 1, i32 0)
; 1 MFMA
call void @llvm.amdgcn.sched.group.barrier(i32 8, i32 1, i32 0)
; 1 PACK
call void @llvm.amdgcn.sched.group.barrier(i32 2048, i32 1, i32 0)
; 1 MFMA
call void @llvm.amdgcn.sched.group.barrier(i32 8, i32 1, i32 0)
%store.addr = getelementptr <32 x float>, ptr addrspace(3) %out, i32 %idx
store <32 x float> %mai.3, ptr addrspace(3) %store.addr
ret void
}


declare i32 @llvm.amdgcn.workitem.id.x() #2
declare void @llvm.amdgcn.sched.group.barrier(i32, i32, i32) #1
declare <32 x float> @llvm.amdgcn.mfma.f32.32x32x1f32(float, float, <32 x float>, i32, i32, i32) #1
Expand Down
52 changes: 31 additions & 21 deletions llvm/test/CodeGen/AMDGPU/sched.barrier.inverted.mask.ll
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@



; Inverted 1008: 01111110000
; Inverted 1008: 001111110000
; GCN: After Inverting, SchedGroup Mask: 1008
define amdgpu_kernel void @invert1() #0 {
entry:
Expand All @@ -14,96 +14,106 @@ entry:
ret void
}

; Inverted 2044: 11111111100
; GCN: After Inverting, SchedGroup Mask: 2044
; Inverted 4092: 111111111100
; GCN: After Inverting, SchedGroup Mask: 4092
define amdgpu_kernel void @invert2() #0 {
entry:
call void @llvm.amdgcn.sched.barrier(i32 2) #1
call void @llvm.amdcn.s.nop(i16 0) #1
ret void
}

; Inverted 2042: 11111111010
; GCN: After Inverting, SchedGroup Mask: 2042
; Inverted 4090: 111111111010
; GCN: After Inverting, SchedGroup Mask: 4090
define amdgpu_kernel void @invert4() #0 {
entry:
call void @llvm.amdgcn.sched.barrier(i32 4) #1
call void @llvm.amdcn.s.nop(i16 0) #1
ret void
}

; Inverted 2038: 11111110110
; GCN: After Inverting, SchedGroup Mask: 2038
; Inverted 4086: 111111110110
; GCN: After Inverting, SchedGroup Mask: 4086
define amdgpu_kernel void @invert8() #0 {
entry:
call void @llvm.amdgcn.sched.barrier(i32 8) #1
call void @llvm.amdcn.s.nop(i16 0) #1
ret void
}

; Inverted 1935: 11110001111
; GCN: After Inverting, SchedGroup Mask: 1935
; Inverted 3983: 111110001111
; GCN: After Inverting, SchedGroup Mask: 3983
define amdgpu_kernel void @invert16() #0 {
entry:
call void @llvm.amdgcn.sched.barrier(i32 16) #1
call void @llvm.amdcn.s.nop(i16 0) #1
ret void
}

; Inverted 1999: 11111001111
; GCN: After Inverting, SchedGroup Mask: 1999
; Inverted 4047: 111111001111
; GCN: After Inverting, SchedGroup Mask: 4047
define amdgpu_kernel void @invert32() #0 {
entry:
call void @llvm.amdgcn.sched.barrier(i32 32) #1
call void @llvm.amdcn.s.nop(i16 0) #1
ret void
}

; Inverted 1967: 11110101111
; GCN: After Inverting, SchedGroup Mask: 1967
; Inverted 4015: 111110101111
; GCN: After Inverting, SchedGroup Mask: 4015
define amdgpu_kernel void @invert64() #0 {
entry:
call void @llvm.amdgcn.sched.barrier(i32 64) #1
call void @llvm.amdcn.s.nop(i16 0) #1
ret void
}

; Inverted 1151: 10001111111
; GCN: After Inverting, SchedGroup Mask: 1151
; Inverted 3199: 110001111111
; GCN: After Inverting, SchedGroup Mask: 3199
define amdgpu_kernel void @invert128() #0 {
entry:
call void @llvm.amdgcn.sched.barrier(i32 128) #1
call void @llvm.amdcn.s.nop(i16 0) #1
ret void
}

; Inverted 1663: 11001111111
; GCN: After Inverting, SchedGroup Mask: 1663
; Inverted 3711: 111001111111
; GCN: After Inverting, SchedGroup Mask: 3711
define amdgpu_kernel void @invert256() #0 {
entry:
call void @llvm.amdgcn.sched.barrier(i32 256) #1
call void @llvm.amdcn.s.nop(i16 0) #1
ret void
}

; Inverted 1407: 10101111111
; GCN: After Inverting, SchedGroup Mask: 1407
; Inverted 3455: 110101111111
; GCN: After Inverting, SchedGroup Mask: 3455
define amdgpu_kernel void @invert512() #0 {
entry:
call void @llvm.amdgcn.sched.barrier(i32 512) #1
call void @llvm.amdcn.s.nop(i16 0) #1
ret void
}

; Inverted 1022: 01111111110
; GCN: After Inverting, SchedGroup Mask: 1022
; Inverted 3070: 101111111110
; GCN: After Inverting, SchedGroup Mask: 3070
define amdgpu_kernel void @invert1024() #0 {
entry:
call void @llvm.amdgcn.sched.barrier(i32 1024) #1
call void @llvm.amdcn.s.nop(i16 0) #1
ret void
}

; Inverted 2046: 011111111110
; GCN: After Inverting, SchedGroup Mask: 2046
define amdgpu_kernel void @invert2048() #0 {
entry:
call void @llvm.amdgcn.sched.barrier(i32 2048) #1
call void @llvm.amdcn.s.nop(i16 0) #1
ret void
}


declare void @llvm.amdgcn.sched.barrier(i32) #1
declare void @llvm.amdcn.s.nop(i16) #1

Expand Down